

US 20120251502A1

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2012/0251502 A1 Towner et al.

(43) **Pub. Date:** Oct. 4, 2012

(54) HUMAN EBOLA VIRUS SPECIES AND COMPOSITIONS AND METHODS THEREOF

- Jonathan S. Towner, Atlanta, GA (75) Inventors: (US); Stuart T. Nichol, Atlanta, GA (US); James A. Comer, Atlanta, GA (US); Thomas G. Ksiazek, Atlanta, GA (US); Pierre E. Rollin, Atlanta, GA (US)
- (73) Assignee: The Government of the US as Represented by the Secretary of the Dept. of health, Atlanta, GA (US)
- (21) Appl. No.: 13/125,890
- (22) PCT Filed: Oct. 26, 2009
- (86) PCT No.: PCT/US09/62079
 - § 371 (c)(1), Jun. 21, 2011 (2), (4) Date:

Related U.S. Application Data

(62) Division of application No. 61/108,175, filed on Oct. 24, 2008.

	(,	
	Publica	tion Classification
(51)	Int. Cl.	(200 (01)
	A61K 35/76 C07H 21/04	(2006.01) (2006.01)

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52) U.S. Cl. 424/93.6; 435/235.1; 536/23.72; 435/236; 530/350; 514/1.1; 514/44 R; 530/330; 530/329; 530/328; 530/327; 530/326; 530/325; 530/324

(57)ABSTRACT

Compositions and methods including and related to the Ebola Bundibugyo virus (EboBun) are provided. Compositions are provided that are operable as immunogens to elicit and immune response or protection from EboBun challenge in a subject such as a primate. Inventive methods are directed to detection and treatment of EboBun infection.

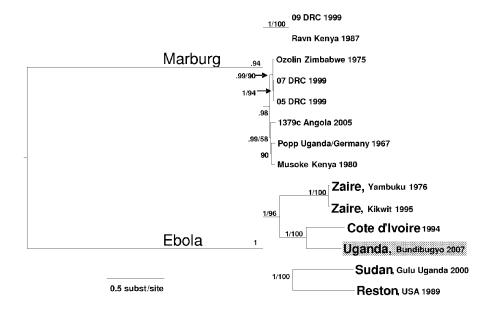


Fig. 1

	FIG. 2 10 20 30 40 50 60 70 80 90 100
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	110 120 130 140 150 160 170 180 190 200 TTAATCTCGACGATCGATACTAACAACAACAACAACAACAACAACAACAACAAAAGACCAACAA
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	210 220 230 240 250 260 250 240 250 260 270 280 290 300
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	310 320 330 340 350 360 340 400
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	410 420 430 440 450 460 450 450 500 500
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	b10 b20 b30 b40 b
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	610 620 630 640 650 690 700 TICCTGTTTTACCAAACCTGGAGGAAGTATGTCCATCATCATGGGCATTCGAGGCTGGCGGCGGCGGGAGTATGCTGAGGAAGTATTTT TICCTGTTTACCAAACCTGGAGGAAGTATGTCCATCATCAGGACTGGCGGCGGCGGCGGCGGCGGCGATAGCTTTTT TICCTGGAGGAAGTATGCCAATTGCACGCCATTGGAGGCGGCGGCGGCGGCGGCGGCGGGATAGGCGAGAAGTATTTT TICCAGGGGGGAAGTAGGGCATTGCATCAAGGCATTGGAGGCGGGGGGGG
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	710 720 730 740 750 750 760 770 780 790 800

Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.01	830 840 850
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.01	AAACAAACAAAAGAAAATTTCTTTTTTTTTTTTTTTTTT
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.01	
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.01	1110 1120 1130 1130 1140 1150 1160 1200 120 1200 1200 1200 1200 1200
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	01	1210 1220 123C 1240 1250 1250 126C 1270 1280 229C 1300
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	01	1310 1320 133C 1340 1350 1350 1340 1350 136C 1370 1380 239C 1400
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	01	1410 1420 1440 1450 1460 1470 1480 1490 1500 1.1500 1.1500 1.1500 1.100 <td< th=""></td<>

Ebola Bundibugyo '07 Ebola IC '94	20.	1510 1520 1540 1550 1560 1570 1590 1600
Ebola Zaire '/b Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	20.	AACAACTCAAAAAGGCUGCACUGAGGGCGAGCAACTCCAACAATATGGCGGGGGGGGGG
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	1710 1720 1740 1750 1760 1770 1780 1790 1800 <t< th=""></t<>
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	1810 1820 1830 1840 1850 1860 1870 1870 1990 1900 1900 1870 1880 1890 1900 1900 1900 1900 1900 190
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	10,	1910 1920 1940 1950 2000 TGATGCTGCTCANTON 1940 1940 1990 2000 TGATGCTGCTCANCTCTTATTARCCTTANGGACGAGGATCATTGCTGATAACCCGGGCTCAAAACACGCCAGAAAAAAATGA 1940 2000 TGATGCTGCAGGAGGATCATTGTCTTATTGAGGACCAGGGATCATGCTGATAACCCGGGCTCAAAACACGCCAGAAAAAAATGA 2000 2000 TGAGACGCGCGAAGTGCTCCTTGATGACCTTGAGGATCATGCTGATGATGCTGACCGGCCGG
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	2010 2020 2030 2040 2050 2050 2040 2050 2060 2070 2080 2090 2100
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	2110 2120 2130 2140 2150 2140 2150 2160 2170 2180 2190 2200

2210 2220 2230 2240 2250 2260 2270 2220 2300 2300 2300 2300 2300 230	231C 2320 2330 2340 2350 2360 2370 2380 2390 24CC 	2410 2420 2430 2440 2450 2460 2470 2490 2500 	2510 2520 2530 2540 2550 2560 2570 2580 2600 2600 2600 2600 2600 2600 2600 26	2610 2620 2630 2640 2650 2650 2660 2670 2680 2690 2700 2700 2700 2700 2700 2700 2700 27	271C 2720 2730 2740 2750 2760 2770 2770 2770 2770 280C 280C 280C 280C 280C 280C 280C 280	281C 2820 2830 2840 2850 2860 2870 2880 2890 297C aaacctcccgacgcgaracarggcgargcgargtgargtrctggtrcacccaccargcgargcargarggarggarggarggarg
6	20		. 20	10	6	20
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC'94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76

2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 	30_C 3020 3030 3030 3040 3050 3060 3070 3080 3090 3100 TCCTGEACCACCCAACCTCCCCCAAGTTGTCATTAAGAAAAATATATGATGATGATGATGATCATCAGAGCTATTCTTCTACGCCCT CCCTGGEACCACCCCCAGCATTCATCCTCCCCAAGTTGTCATAGAAAAAAAA	311C 3120 3130 3140 3150 3150 3160 3170 3280 3190 3200 Gettageaccagtattcacaacctatttacaatccctacccaatatgeacctctaaccagegegegegegegegegegegegegegegegegeg	32LC 3220 3230 3240 3250 3260 3270 3280 3290 3300 3300 2290 3300 2290 3300 220 2300 230	33L0 3320 3330 3340 3350 3360 3370 3390 3400 CTTACTAGTATAAGTCCTCGATCACACTCCCAAAATCAAAACCCCAAACTCACACGGGGGGGG	34.0 34.20 34.30 34.30 34.40 34.50 34.60 34.70 34.80 34.90 35.00 TTTGCAGAGGTTGTGAAAATGCTTGTCTTGTCTTGTCTT	3510 3520 3530 3540 3540 3550 3560 3570 3580 3590 3600 3500 3580 3590 3600 3600 3500 3590 3600 3500 3500 3500 3500 3500 3500 350
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76

Patent Application Publication Oct. 4, 2012 Sheet 6 of 27 US 2012/0251502 A1

<pre>Ebola Bundibugyo '07 Ebola IC '94 Ebola IC '94 Ebola Bundibugyo '07 Ebola Bundibugyo '07</pre>
--

	4410 4420 4430 4446 4450 4460 4460 4470 4480 4470 4480 450 455 455 4450 4470 4480 4490 45 TTATATGTTCTCAAAAATAGTGAGTAAGTTAAGAAAAGCATCCTTTACTTGGAGGGGGGGG	4510 4520 4530 4540 4550 4560 4560 4570 4580 4590 46 	4610 4620 4630 4640 4650 4670 4680 479 4680 479 4780 4790 4780 4790 4780 4790 4780 4790 <	4710 4720 4750 4750 4750 4750 4750 4750 4760 4770 4780 4780 4780 4780 4780 4780 478	4810 4820 4830 484C 4850 4860 4870 4870 4870 4870 4870 4980 4990 4990 4990 490 490 490 490 490 490	4910 4920 4930 4940 4950 4960 4960 4970 4980 50 	5010 5020 5040 5050 5060 5070 5080 5090 51 <
<pre>Ebola Bundibugyo '07 Ebola IC '94 Ebola Eundibugyo '07 Ebola Bundibugyo '07 Ebola Bundibugyo '07 Ebola IC '94 Ebola Eundibugyo '07 Ebola Eundibugyo '07 Ebola E undibugyo '07</pre>	yo '07 6	¥0 '07 б	¥° '07 б	yo '07 6	yo '07 6	yo '07	Ebola Bundibugyo '07 Ebola IC '94 Ebola IC '94

6510 6520 6530 6530 6530 6530 6560 6550 6560 657C 658C 6590 6600 .	6410 6420 6430 6440 6450 6470 6480 6500 Ebola Endibugyo 07 AAACTGCTACCAGCACTCGGGCATGCTGGCGAATGCCTACCTGAGGGGGGGG	6310 6320 6340 6350 6360 6370 6390 6400 Ebola Bundibugyo 07 ATGGAGTTGCCACAGATGTACCAACGAGGATTCCGAGGGATTCCGAGCTGGTGTGTGT	6210 6220 6230 6240 6250 6270 6280 6300 Ebola Bundibugyo 07 AACAACACTCTCCCAGGGTAAGTGGTAAATTGGTGGGGGGATAAACTTTCCTCCACAAGTCAGGGTGGGGGCTTAATCTAGAAGGTA 6300 6300 Ebola Bundibugyo 07 AACAACACTCTCCCAGGGTAAGTGGTAAATTGGTGGGGGGATAAACTTTCCTCCACAAGTCAGGGTGGGGGGGG	6110 6120 6130 6140 6150 6170 6280 6190 6200 Ebola Eundibugyo 07 TCTACAATTGCCCCGGTGAAGAGATTTTTTGTTTTGGTTTGGGGTAATTAAT	6010 6020 6030 6040 6050 6070 6080 6100 Ebola Bundibugyo 07 Tadagcaacctragrtracrartrartracraacrartracraacacrartracragcaacacrartracraacacrartracrarcageaar 6030 6070 6030 6100 Ebola Bundibugyo 07 Tadagcaacctragrtracrartracrartrartracraacacrartracrarcageaar 6030 6070 6080 6070 6100 Ebola Bundibugyo 07 Tadagcaacctragartacrartracrartracrarcageaar 6030 6030 6030 6100 Ebola 10 Tadagcaacctragartacrartracrarcageacgaacgaartaartragacaaraaraaraaraaraaraaraccaaraaraaraaraa	5910 5950 5950 5920 5930 5940 5950 5950 5940 5960 5970 5980 5970 5980 6000 Ebola Bundibugyo '07 GTAAA-TTGTTATGGTATCTATTATTAGGAAGAACGGATGAGGATTAAGGGGGGGG
---	---	--	--	---	--	---

Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20,	6610 6620 6630 6640 6660 6670 6690 670 construction 6610 6660 6670 6690 670 construction 6610 6660 6670 6690 670 construction 6610 6660 6670 6690 670 construction 6600 670 6600 670 construction 6600 670 6600 670 construction 6600 670 670 6600 construction 670 670 670 670
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	10,	<pre></pre>
Ebola Bundibugyo Ebola IC'94 Ebola IC'94	L0.	6810 6820 6830 5840 6850 6850 68670 6870 6890 6900 690
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	6910 6920 6930 6950 6970 6980 7003 TAATTTGGAAGGTAAATCCTACTGTTGACCGGGGGTGAAGGGGCCTTCTGGGGAAAATAAAAACTTCACAAAAAACCTTCAAGTGAAGGGCT
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20,	7010 7C20 7030 7040 7050 7080 7103 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 .
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	.01	/110 /120 /130 /140 /150 /200
Ebola Bundibugyo Ebola IC'94 Ebola Zaire'76	10.	7210 7220 7230 7240 7250 7250 7260 728C 7290 7303
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20,	7310 7320 7340 7350 7360 7403 100 7403 100 7403 100 7403 100 100 100 100 1

7410 7420 7430 7440 7450 7460 7470 7490 7500 7500 7500 7500 7500 7500 7500 75	7510 7520 7540 7550 7560 7570 7590 7600	7610 7620 7640 7650 7660 7670 7680 7690 7700 <t< th=""><th>7710 7720 7730 7740 7750 7760 7770 7770 7780 7790 780 780 780 780 780 780 780 780 780 78</th><th>7810 7820 7830 7840 7850 7860 7870 7880 7890 7990 7900 780 7890 7900 790</th><th>7910 7920 7930 7940 7950 7970 7980 7990 8000 </th><th>8010 8020 8030 8040 8050 8060 8070 8080 8090 8100 8200 8200 8200 8200 8200 8200 820</th></t<>	7710 7720 7730 7740 7750 7760 7770 7770 7780 7790 780 780 780 780 780 780 780 780 780 78	7810 7820 7830 7840 7850 7860 7870 7880 7890 7990 7900 780 7890 7900 790	7910 7920 7930 7940 7950 7970 7980 7990 8000	8010 8020 8030 8040 8050 8060 8070 8080 8090 8100 8200 8200 8200 8200 8200 8200 820
Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07
Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94
Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76

Patent Application Publication Oct. 4, 2012 Sheet 12 of 27 US 2012/0251502 A1

	8970 8980 8990 9000 	905C 9060 9070 9080 9090 9100 aaacaagatatcaagggcattgatgactcaagactaagaggattactaaccettt aaacaggacattaagaacategatgatteagaggegettaattgaceeett agacaagagattaagagggatteaaaattaagaggeattgatgaeeeetta	9170 9180 9190 9200 	9270 9280 9290 9300 - regeacceacagtcetteatcatettataaca regeatcegeaatcatteataatet regeacceacaatccetaattatgettatcat	9370 9380 9390 9400 - rectagtecetearcagaagataccagacet rectgrtreceargeargeete cattectearteagataagette	9450 9470 9480 9490 9500 	9570 9580 9590 9600
FIG. 2	8910 8920 8930 8940 8950 8960 8970 8980 8990 90 AACCTGCGGCTCCCTTGAACAATTGAACATCACTGCTCCTAAAGATAGCCCTAGATTGCCAACTAGATTGCAACAACAACAACGGCCCA	9010 9020 9030 9030 9040 905C 9060 9070 9080 9080 9090 91 AAAATTACACTATTGACACTTTTGGAGACTGCGGAGATATGGTCAAGGATATCAAGGCCTTGATGACCTTAGGAGGACTTACTAAGCCTTT AAAATTACACTGTCGATGACCTTTGGGGGAGATTGGTCAAAGATAGAT	9110 9120 9130 9130 9140 915C 9160 9170 9180 9190 92 	9210 9220 9230 9240 925C 9260 9270 9280 9290 93 .	9310 9320 9330 9340 935C 9360 9370 9380 9390 94 	9410 9420 9430 9430 945C 9460 9470 9480 9490 95 .	9510 9520 9530 9540 9550 9550 9560 9570 9580 9580 9580 96
	-07 AAC		-07 GTG		- 01 601 -	- 07 CA2 TA2 CA2	- 07 AG
	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76

FIG.2 9610 9630 9640 9650 9660 9690 9700 9610 9630 9640 9650 9660 9690 9700 9700 9650 9650 9660 9670 9690 9700 9700 9650 9660 9670 9680 9700 9700 9650 9660 9670 9680 9700 9700 9650 9660 9670 9680 9700 9700 9650 9660 9660 9670 9700 9701 1000 1000 1000 1000 1000 1000 9701 1000 1000 1000 1000 1000 1000 1000 9702 1000 1000 1000 1000 1000 1000 1000 9703 1000 1000 1000 1000 1000 1000 1000 9704 1000 1000 1000 1000 1000 1000 1000 9705 1000 10000 10000 1000	971C 9730 9730 9730 9740 3750 9760 9770 978C 9780 9800 	981C 9820 9830 9840 9850 9860 9860 9870 988C 9890 9900 9900 07 000 000 000 000 000 000	991C 9920 9930 9940 9950 9960 9970 998C 9990 10000 	1001C 20020 10030 10040 20050 10050 10050 10050 10070 1208C 10090 10100 	1011C 20120 10130 10140 20150 10160 10270 1238C 10190 10200 	1021C 10220 10230 10240 10250 10250 10260 10270 1228C 10290 10300 	1031C 10320 10340 10350 10360 10390 10400
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo 'C Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo 'C Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo 'C Ebola IC '94 Ebola Zaire '76

11110 1120 11130 11140 Bbola Bundibugyo 07 ACCAGTCAAGTTCTCCCCTCCTGCATGAATCAACCTTCAAGGC Bbola IC 94 ACCAGTCAAATTCTCCCTCCTCCATGAATCAACCTTGAAGGC Bbola Zaire 76 GCCGGCGAAATTTTCCCTTCTTCATGAGGTCCAAGGCTCGAAGGC	11210 1220 11236 11240 Ebola Bundibugyo 07 CTGGCAATATAGTCCAAGGCTACCAACGATCATTTTTGTAA Ebola IC 94 CTCGCTATTTAGTCCAACGCTACCAAATGCTAATGCTAACTTGTGGGCTAA Ebola Zaire 76 CTTGCTAATCTCAACTCAAATAGTTCTTAATAGAGCTAA	11310 1320 11340 Ebola Bundibugyo 07 CCTTTTGACGAAGGGGCTAATTTTTGCTCATTCTAATAATA Ebola IC 94 GTCTTTGACATGAGGGGTAAGGAACGAGCTCATTTTGCTCATTGATAGATA	11410 1420 11430 11440 Ebola Bundibugyo 07 AATTTCTEGAATTGCTAAAGATTATACTGCGCACTAAGAGAGA Ebola IC 94 TATATCAGATTGCTATCTACCCTTTGCATTGTCACTCTAATTTA Ebola IC 94 TATATCAGGACTCAGGATTGCATTGTATTTA Ebola Zaire '76 AAACCAGGACTCAGGAATCCCTTAAGAGAGAGAGA	11510 1520 11530 11540 Ebola Bundibugyo 07 C-TGAGFTFGTGGATTACTCCTTTTAAAAGTCTAATCAATT Ebola IC 94 C-TAGAATTGATCACTCCTTTTAAAAGTCTAATCAAATT Ebola IC 94 TACTAAATTGATCATCCACTTGATTACACATCCAACC Ebola Zaire 76 TACTAAATTGATAATTGTAATTGTAACCGCGAGGTCAAACC	11610 11610 11630 11640 Ebola Bundibugyo 07 TCTTACTAAGAATGA-TTTGAGGAAGATTAAGAAAAGTGC Ebola IC 94 TTAGATTAGCTATAG-TTTGAGGAAGATTAAGAAAAGTGC Ebola IC 94 TTAGATTAGGAAAAAGCCTGAGGAAGATTAAGAAAAGTGCGGAGAAGAATAAGTGCGGAGAAGATTAAGAAAAAGTGCGGAGAAGAATTAAGAAAAAGTGCCGGAGGAAGATTAAGGAAAAAGCGCCGGAGAAGATTAAGGAAAAAGCGCCGAGGAAGATTAAGGAAAAACGCCGGAGAAGATTAAGGAAAAACGCCGAGGAAGATTAAGGAAAAACGCCGAGGAAGAATTAAGGAAAAAACGCCGAGGAAGATTAAGGAAAAAACGCCGAGGAAGATTAAGGAAAAACGCCGAGGAAGAATTAAGGAAAAAACGCCGAGGAAGAATAAGCGCCGAGGAAAAAACGCCGAGGAAAAAACGCCGAGGAAAAAA	11710 1720 1175 11740 Ebola Bundibugyo 07 ATGGCAACTCAACATAACATATCAGAATGCCAGGATGCCAAGATTATCTT Ebola IC 94 ATGGCTAACATAACGCAATATCCAGGAGGGCGCAGGATATCATCATCATCATCATCATCATAATCATAATGATAATCAGGATAATCAAGGTTATCAAGATAACCCAAGAGGCTAAGGTTATCAAGATAACCCAAGAGGCTAGGGTTATCAAGATAACCCAAGAGGCTAAGGTTATCAAGATAACGCAAGAGGCTAAGGTTATCAAGATAACCCAAGAGGCTAAGGTTATCAAGATAACGCAAGAGGCTAAGGTTATCAAGATAACGCAAGAGGGCTAAGGTTATCAAGATAACGCAAGAGGGCTAAGGTTATCAAGATAACGCAAGAGGGCTAAGGTTATCAAGATAACGCAAGAGGGTTATCAAGATAACGCAAGAGGGCTAAGGGTTATCAAGAGAGGTTAACGAGAGGGCTAAGGGTTAACGAGAGGGTTAACGAGAGGGTTAACGAGAGGGTTAACGAGAGGGGTAAGGGTTAACGAGAGGGGGGGG	11810 11810 11830 11840 Ebola Bundibugyo 07 CATACTCATTAAATCCTCAGTTGAAAAATTGTAGACTACCAAAAA Ebola IC 94 CATACTCCTTAAAATCCCCCAACTAAAAAATTGTAGACTACCGAAAA
11110 22220 1125 11110 11150 11150 11150 12160 12270 1118C 11190 112 ACCAGTCAAGTTCTCCCTCCTGCATGAATCAAGCTTTAATCAAAAAAACCCGGCAACTAAGATGCAGGCCTTGATTCTGGGAATTTAACAGCTCC ACCAGTCAAATTTCTCCCTCCTGCAAGCTTGAAGACCTTGGCACTTGGCAACCTGGGAACTTAGAATTCTGGGAATTTAACAGCTCC ACCAGTCAAATTTCTCCCTCCTTGAAAACCTTGAAGACACTTGCTAAAAAACCTGGGAACCCAGATGCAGGCCTTGGAATTTAGAATTCAATAGCTCC GCCGGGGGAAAATTTTCCCTTCTTGATGAGACTCGAAGCATTGCAAGGATCCTGGGAAGCTGAGGCCTTGATTTGAATTCAATAGCTCT GCCGGGGGAAAATTTTCCCTTCTTCATGAGAGCTCGGAAGCATTGAAGGATCCTGGGAAGCTGAGGTCGAAGCTTGATTTGATTTGGCTCTGGAAGTCCTCGACGCTGAAGTCCTTGATTAGGATCCTCGACGCTGAAGTCCTCGACCCTTGAAGTTTTAGCCCCCCTGGACGAAGCTTGAAGTCCTCGACGCTGAAGCTCCTCGACGCTGAAGCCCCCCCC	11210 2220 11235 11240 11250 12260 1227 11290 1290 133 	11310 21320 11335 11340 11350 11350 11360 11360 11370 11390 114 	11410 21420 11435 11440 11450 11450 11460 11470 11470 11480 11490 115 AATTTCTGAATTGCTAAAGATTATACTCGCACATTAAGAGACAAGTTAATCATTACTTTAGTTAATAATAGTGCTAAGATAGCTCTGGCTAAGCTAA TATATCAGATTGCTAAAGATTATACTCGCACTCTAAT-TAAGAGACAAGTTAATTACTTTAGTTAATAGTGATAGTTAGATAGTTAA TATATCAGATTGCTTTGCATTGCATTGCATTGTAATCACTGGATAGAATTAGTTAATTAGGTTGCTGAGATAGGATAGGATAGGATAGGATAGGATAGGATAGATTAGACTTGGATAGAAGAGATTAGAGTGATAGGAATTAGATTGGAATGATTAGGATTGGAATGATTAGGATAGGAATGATTAGGATTGGAAGGAATGATTAGGATTGAAGAGAATTAGTTGAAGAGAATTAGTTGAATGATTGAATGAATGATTAGAATGATTAGAATGATTAGAATGATTAGAATGATTAGAATGATTAGAATGATTAGAATGAAGAGAAGA	11510 2.520 11530 11540 11550 1260 1.560 1.570 11590 116 	11610 22620 11635 11640 11650 12660 12660 12670 11690 117 .	11710 11720 11735 11740 11750 11750 11770 11770 11780 11790 118 ATGGCAACTCAACATATCACAGATGCCAGATGCTATGTTCTTCACCCATTGTTGTTAGATCATGATCTTGTGTATTCTT ATGGCTACCAACATATCCAGAGGGGTTATCTTCACCCATTGTTGTTTGT	11810 22820 11832 11840 11850 12860 12860 12870 11890 119
11200 AGCTCC AGTTCT AGCTCT	11300 CTAATC ATGATT	11400 CTAGAG CTCAAG	11500 AACTAA GETTTG CCTATA	11600 ATGTAG AGAGA	11700 FTTAAT FACAAC	11800 ATTCTT ATTCCG	11900 refece

11910 11920 11930 11940 11950 11950 11960 11970 11980 11990 12000 ATAGTTACATTACTTACTTACTTACTTTACGAAATTATCGGGGGGGG	12010 12020 12030 12040 12050 12060 12070 12080 12090 12100	12110 1212C 12130 1214C 12150 12160 12170 1218C 12190 12200 	12210 1222C 12230 1224C 12250 12260 12260 12270 1228C 12290 12300 GAATAACGETECAACATGEAGATTTAATAGACATTCTCGGGTAGGETATATATTTTCTGGAAAATACCGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTCACTC GAATAATCGCTCAACATGGAGATTTGGTAGATATTCTGGGGATATATTTTTGGAAAATACCGTTGTAGTTGTTGTTGTTGTCACTC GAATAATCGCTCAACATGGTGATAATTTGGTAGATATTTGGGAGATAATATTTTTGGAAAAATACCGTTATCTGTAGTGTGTGCGGTGAGAAATACCGTTGTGGTGTTAAGGCTTAGGGGGAGTAATTTTTGGAAAAATACCGTTGTGGTGGTGAGAGATTATGGAAAAATACCGTTGGGGGGGATAATTTTTGGGAAAAATACCGATGCTGGGGGGGG	12310 1232C 12330 1234C 12350 12360 12360 12370 1238C 12390 12400 .	12410 1242C 12430 1244C 12450 12460 12470 12470 1248C 12490 12500 	12510 1252C 12530 1254C 12550 12550 12560 12570 1258C 12590 12600 TCCACAAACCTGAAACTCTGTAATCTGTATAGGGGGGGGG
	01	20			01	
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76

arctaacaccaggettaracactertagattagaggagggaaccaattercggccagggeggtaagagttaaggettattgtgggtattgatcatcertgatcatte gcttaacaccaggcctttcctttacatcaaaaccaatttcctccactacctatgatcaagaactttgggggaatttatcacttagatgc atctaacaccgggstcttaattcttatatcacaaagaaatccattccsttgccaatgattaagaactactatggggaattttaccaccstgaccgccc 1339C 1295C 12,62,0 0.7 , 07 .07 Ebola Bundibugyo' Ebola IC '94 Ebola Zaire '76 Bundibugyo ' IC '94 Zaire '76 Bundibugyo' IC '94 Zaire '76 Bundibugyo ' IC '94 Zaire '76 Bundibugyo' IC '94 Zaire '76 Bundibugyo Bundibugyo Bundibugyo IC '94 Zaire '76 IC '94 Zaire '76 46, Ц Ebola | Ebola | Ebola | Ebola Ebola

Zaire '76

	13420 13430	13410 13420 13440 13450 13460 13470 23480 1359 TTATCCTACACTATION	13310 13320 13330 13330 13330 .		· · · · · · · · · · · · · · · · · · ·	TACCGTG TACCGTG TACCGTG TACCGTG	· ហ្វ ហ្ ហ្	· H U K
ovreus over the second	13	13 Ebola Bundibugyo '07 TTATCCTAC Ebola IC '94 ATATCCGAC Ebola Zaire '76 TTATCCGAC	Bundibugyo '07 C IC '94 Zaire '76 C	92, 1 , o <u>Y</u> pud	ש איק		6 6	5 7

		FIG. 2 24110 14120 24230 14140 1425C 14160 24270 14180 1429C 14200
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	.07	ICCACAATCACTCAAGACTGCTACCAGGATTGCTCCCTT IACCTCAATCACTGAAAACTGCTACTAGAATTGCACCCTT IGCCTCAGTCACTGAAAACGGCTACTAGAAATGGCACCCATT
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	14210 14220 14240 14250 14260 14290 14300 1111 1111 1111 11111 11111 11111 11111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 11111111 11111111 11111111 11111111 11111111 11111111 111111111111111111111111111111111111
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	14310 14320 14340 14350 14360 14360 14360 14360 14400
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	24410 14420 24430 14440 1445C 14460 24470 14490 1449C 14500
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	24510 14520 24530 14540 14550 14560 24570 14590 14600 11111 11111 11111 11111 11111 11111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 1111111 1111111 1111111 1111111 1111111 1111111 11111111 11111111 11111111 11111111 111111111 111111111111111111111111111111111111
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	14610 14620 14630 14630 14630 14630 14630 14630 14630 14630 14630 14630 14030 14630 14730 14530 14630 14630 14730 14630 14630 14730 14630 14630 14730 14730 14730 14630 14630 14630 14630 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 14730 147300 147300 147300 147300 147300 147300
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	24710 14720 24730 14740 14750 14760 24770 14780 14780 14800 ATAAACACATFETTCCTCCTCCTCGGCGGATTTAGAGGTGAGATGGTAGTGTACTTCTTCTTCTTCTGCGGTGAGTGGGGCGGTTA ATAAACACATFETTCCTCCTCGTGGATGAGGTGAGATGGTAGGTGGTGGTAGTTGCTCGGTGGTGGGTG
Ebola Bundibugyo Ebola IC '94 Ebola Zaire '76	20.	24010 14020 24030 14040 14040 14050 14060 24070 14030 140900 14090 14090 14090 14090 14090 14090 14090 14090 14090 14090

14910 1492C 24930 14940 14950 14960 14960 14970 14980 14990 1500C	15010 1502C :5030 15040 15050 15060 15060 15070 15080 15090 15100	15110 1512C 25130 15140 15150 15160 15170 15280 15290 15200	15210 1522C 55230 15240 15250 15260 15260 15270 15280 15300 15300	15310 1532C 55330 15340 15350 15350 15360 15370 15380 15390 15400	15410 1542C 25430 15440 15450 15460 15460 15470 15480 15490 15500	15510 1552C 25530 15540 15550 15560 15570 15580 15580 15580 15580 1560C
70' oY2	976 '07	9 <u>7</u> 6 '07	70' o72	9 <u>7</u> 6 '07	9yo ' 07 76	9 <u>7</u> 6 76
Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebola Bundibugyo '07	Ebole Bundibugyo '07
Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94
Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76

<pre>Ebola Bundibugyo '07 Ebola IC '94</pre>

000000	10420 AGUATTCCTCTGTG AGUATTCCACTGTG AATTGTCCCTTTATG	16510 16520 16530 16550 16560 16580 16590 167000 167000 <	16610 16630 16640 16650 16670 16680 16690 1670 Ebola Bundibugyo 07 ATTTCTTCCATGCATCATTGGGGGGGGCCGGCACAAAGGACGGCCCCAAAAATCGATCG	16730 16730 16740 16750 16760 16790 16900 16790 16790 16790 16900 16790 16790 16900 16900 16900 16790 169000 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 169000 160000 160000 160000 1600000 16000000 160000000000 16000000000000000000000 16000000000000000000000000000000000000	16830 16830 16840 16850 16870 16890 107 ATGATAAGGAAATTGCCAACAACAACACACACACCACAC	16910 16920 16930 16940 16960 16970 16980 16990 170 Ebola Bundibugyo 07 CarccaaraGearacaaracaaracaacercceaaga	Image: Interpreted and the second structure of
ן בעקעט	b430 log440 	16530 16540 	16630 16640 - GEAGEACCGGCACAAA GEAGAAGTCGATCTAAA GGAGAAGCAGACAGACAGA	16730 16740 CAAACCCACCAAGCATC CCAGAAAGCACTGCTGT CCAGAAAGCACTGCTGT CAAGAACAAACCAC	16830 16840 16850 	16920 16930 16940 16950 16950 16960 16970 16980 16990 	17020 17030 17040 17050 17060 17070 17080
עזנע	L 64 20 AGGGACAAAATCO AGGGTCAAAGTCO AGGGTCAAAACTCO	16550 . AAATAATCAACA CAGTCGAGTGGA TGATCATGTACA	16650 . GGACGCCCCAAN AATCAAGACCAAN AACAGCAACCGN	16750 . CCCAAATCTAAG: TCTTGGTTCCCTG CAGAGATCCACA	16850 . acat ccaacaci gtattcccagaa ci gtcgttccagt	16950 . TGCGATTCCAAA GAGGGTTCTAACI TCGGCATCCAAGI	17050 - agtctgggggggggggggggggggggggggggggggggg
16460	16460 CAGATCCAAT CTAGTCCGATC CTAGTCCGATC	16560 JTTGTCCGAT ZACATTTGATZ FCCTCACGACZ	16660 AATCGATCGAC AGAGAATCGAC AGAGAGATGAC	16760 rcagga-acto ccagaccagco rcagaccagco	16860 .cctatatatcaage .atacaaage .cctttctaagete	16960 3AAGAAAATGC AGCAATAACA? AGGGAAGGTC?	17060 . raactgaaat caacagagati
ן פיזיני	L04/U RATAGCTTTC RAACAGTTTTC RATAATTTTC	16570 	1667C CCGAAGAACAC C-AAGAACAC C-AAAGATAT	16770 .aaggttcaac :ttgctccacc	16870 GGCCCTATCCAC AGCCCCACCCA TGACTCTGCTT	1697C CCGTTCAAGC MTAATTTAGTC	1707C Zaccaaactaz Getaaggettz Atcaaagtacta
08795	L0480 . CTACATCTGA CTACACCACG CTCTATCAGA	16580 . Acatgtgcaa Atatgtgtaa Acacatgtaa	16680 . Jacagttaaa Ftatctttga Ftcaactgga	16780 . SCGCATTTTT STCCATCTGC	16880 . .agccgaattta aaccaaaccag	16980 . FTCACACCGA ETCGCACAGA	17080 . ATTCGACAAT ACTCGGCAGC
1619L	L0490 . TTATAGCCTT TCATCGCATT TCGTAGAACT	16590 . GAGCACTGCC AAGCACAGCA GAGTACAGCC	1669C . CCCATACCAT CGCAAACGGA TCAAGCACAA	1679C . TGAGAAACTT TGACGAGGCT AAATGAGCCA	1689C . TCATGGTAAA TTGTCGCGAT AAATCCCAAAA	16990 . ATTGTCCTAC ATTGTACTGC CTAGTCCTAC	1709C TTAAAGGCAAT TTGAGGGCAAT TTGAGGTCCAT
16500	L 6000 ACTG GTTG GCTG	16600 ••• AGTA AGTA AGCA	16700 ••• ATGA AAAG ACAA	16800 ••• 3aat Acat Igaa	16900 ••• ACAC 3TAT	17000 catt c gtt c ttt	17100 •••• TCCA ACCA CATT

		17110 17120 1713C 17140 17150 17160 17170 17180 1720
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	01	ealrocactgtratgtgtgtgttacggggtgtratratgtgtgtgtgtgtgtggggggttgtggggggttgtggggg
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	07	1/210 1/220 1/290 1/290 1/240 1/250 1/260 1/260 1/270 1/290 1/290 1/290 1/290 1/200
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	07	17310 17320 17320 17340 17350 17350 17350 17350 17370 17380 17390 17400 Gecadaaatagtetictigggacaacaacceccecgaatiggecceaactecticatigatigatigatigatigatigatigatigatigatig
Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	20.	17410 17420 27436 17440 17450 17460 17460 17470 17490 27496 17500
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	07	17510 17520 2753C 17540 17550 17550 17550 17550 2753C 17600 2753C 17600 2753C 17600 2753C 17600 2753C 17600 27510
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	01	17610 17620 2763E 17640 17650 17650 17660 17670 17670 2768E 17700 Aggigatatifical
Ebola Bundibugyo ' Ebola IC '94 Ebola Zaire '76	10.	17710 17720 1773C 17740 17750 17750 17760 17770 17780 1778C 17800
Ebola Bundibugyo '07 Ebola IC '94	07	17810 17820 17830 17840 17850 17860 17860 17870 17830 27890 17800 17800 17800 17800 17900 17900 17900 170000 17000 17000 17000 17000 17000 17000 170000 17000 17000 17000 1700

TGCAAATTCAACGAAGCCCATACTGGCTAAGTCATTAACTCGGTATGCTGGTGGGGTTACGATTTAAGTTATATCCGCCTTGGTTTTCCATCAGA

Ebola Zaire '76

FIG. 2	17910 17920 17940 17960 17970 27980 18000	18010 18020 18030 18040 1805C 18050 18050 18070 28080 18090 18100 TTAGTGTGTGTGTATAATCAGCAAAGGTCGAAGCTATACCACTTCATCAAAACGACAAAGGGGCCGGATTACAAAATTAGTCAATGACTACC TTGGTTAATGACTATAATCAAGACAAAGGTCGAACCAAACATACCACTTCATTAAAAGCGGCCGGGATTACAAAATTAGTCAATGACTACC TTGGTTAATGACTAATAATCAACAAAGGTCGAAGCCCAAACATATCATTTCATTAAAAGCGGCCGGGATTACAAAATTGGTAAATGACTAACC TTGGTTAATGATTAATCAACAAAGGTCGAAGCCCAAACATATCATTTCATTAAAAACAATAAAGGGCCGGGATTACAAAATTGGTAATGCTAACC TTGGTTAATGATTAATCAACAAAGGCGACAAAGTTATCATTTCGTTAAAACGATCGAT	1811C 18120 18130 1815C 18160 18170 28180 18190 18200 <	18210 18230 18240 18250 18260 18290 18300	18310 18320 18330 18340 18350 18360 18360 18370 28380 18390 18400 	18410 18420 18430 18440 18450 18460 18450 18460 18470 28480 18490 18500 	18510 18520 18530 18540 18550 18550 18560 18570 28580 18590 18600 .
	Ebola Bundibugyo '07	Ebola Bundibugyo '	Ebola Bundibugyo	Ebola Bundibugyo '	Ebola Bundibugyo '	Ebola Bundibugyo '	Ebola Bundibugyo '07
	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94	Ebola IC '94
	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76	Ebola Zaire '76

		FIG. 2 18610 18620 18640 18650 18660 18670 18680 18700
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	AATTACTGTGGGTTTATGCATTTAAATGACATCACAGATGGGATATAATATAGTTAATT AAAAAGT-TAATCTGCTTGCTTTAATTATAACTTTAALATTCGACAAATAGTTAACG AACT-CTGCACTTTATAATTAAGCTTTAACGAAAGGTCTGGGGCTCATATTGTTAGTG
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	20.	18710 18720 18730 18740 18750 18760 18770 18780 28790 18800 .
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	18810 18820 18830 18840 18850 18860 18870 18880 2890 1890C .
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.07	18910 18920 18930 18940 18950 18950 18960 18970 18980 28990 19000
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.01	19010 19020 19030 19040 19050 19060 19060 19070 19080 29090 19100
Ebola Bundibugyo '07 Ebola IC '94 Ebola Zaire '76	.01	GTGTCCA GTGTCCA GTGTCCA

HUMAN EBOLA VIRUS SPECIES AND COMPOSITIONS AND METHODS THEREOF

RELATED APPLICATIONS

[0001] This application claims priority benefit of U.S. Provisional Application 61/108,175 filed 24 Oct. 2008; the contents of which are hereby incorporated by reference.

DEPOSIT STATEMENT

[0002] The invention provides the isolated human Ebola (hEbola) viruses denoted as Bundibugyo (EboBun) deposited with the Centers for Disease Control and Prevention ("CDC"; Atlanta, Ga., United States of America) on Nov. 26, 2007 and accorded an accession number 200706291. This deposit was not made to an International Depository Authority (IDA) as established under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, and is a non-Budapest treaty deposit. The deposited organism is not acceptable by American Type Culture Collection (ATCC), Manassas, Va., an International Depository Authority (IDA) as established under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. Samples of the stated Deposit Accession No. 200706291 will be made available to approved facilities for thirty years from the date of deposit, and for the lifetime of the patent issuing from, or claiming priority to this application.

FIELD OF THE INVENTION

[0003] The invention is related to compositions and methods directed to a novel species of human Ebola (hEbola) virus.

BACKGROUND OF THE INVENTION

[0004] The family Filoviridae consists of two genera, Marburgvirus and Ebolavirus, which have likely evolved from a common ancestor¹. The genus Ebolavirus includes four species: Zaire, Sudan, Reston and Côte d'Ivoire (Ivory Coast) ebolaviruses, which have, with the exception of Reston and Côte d'Ivoire ebolaviruses, been associated with large hemorrhagic fever (HF) outbreaks in Africa with high case fatality (53-90%)².

[0005] Viruses of each species have genomes that are at least 30-40% divergent from one another, a level of diversity that presumably reflects differences in the ecological niche they occupy and in their evolutionary history. Identification of the natural reservoir of ebolaviruses remains somewhat elusive, although recent PCR and antibody data suggest that three species of arboreal fruit bats may be carriers of Zaire ebolavirus³. No data has yet been published to suggest reservoirs for the Sudan, Reston and Côte d'Ivoire ebolavirus species. However, a cave-dwelling fruit bat has been recently implicated as a natural host for marburgvirus^{4, 5}, supporting the hypothesis that different bat species may be the reservoir hosts for the various filoviruses.

[0006] Filovirus outbreaks are sporadic, sometimes interspersed by years or even decades of no apparent disease activity. The last new species of ebolavirus was discovered 14 years ago (1994), in Cote d'Ivoire (Ivory Coast), and involved a single non-fatal case, a veterinarian who performed an autopsy on an infected chimpanzee found in the Tai Forest⁶. No further disease reports have been associated with Côte d'Ivoire ebolavirus, in contrast to Zaire and Sudan ebolaviruses which have each caused multiple large outbreaks over the same time period.

[0007] In late November 2007, HF cases were reported in the townships of Bundibugyo and Kikyo in Bundibugyo District, Western Uganda. The outbreak continued through January 2008, and resulted in approximately 149 cases and 37 deaths². Laboratory investigation of the initial 29 suspectcase blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed randomprimed pyrosequencing approach identified this to be an Ebola HF outbreak associated with a new discovered ebolavirus species. These specimens were negative when initially tested with highly sensitive real-time RT-PCR assays specific for all known Zaire and Sudan ebolaviruses and Marburg viruses. This new species is referred to herein as "the Bundibugyo species", abbreviated "EboBun".

[0008] Accordingly, compositions and methods directed to the new Ebola virus species are described herein and the most closely related Ebola Ivory Coast species, which compositions and methods are useful for diagnosis and prevention of human Ebola virus infection; including related vaccine development, and prevention of hemorrhagic fever in a human population.

SUMMARY OF THE INVENTION

[0009] The present invention is based upon the isolation and identification of a new human Ebola virus species, EboBun. EboBun was isolated from the patients suffering from hemorrhagic fever in a recent outbreak in Uganda. The isolated virus is a member of the Filoviridae family, a family of negative sense RNA viruses. Accordingly, the invention relates to the isolated EboBun virus that morphologically and phylogenetically relates to known members filoviridae.

[0010] In one aspect, the invention provides the isolated EboBun virus deposited with the Centers for Disease Control and Prevention ("CDC"; Atlanta, Ga., United States of America) on Nov. 26, 2007 and accorded an accession number 200706291, as stated in the paragraph entitled "DEPOSIT STATEMENT" supra.

[0011] In another aspect, the invention provides an isolated hEbola EboBun virus comprising a nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of: a) a nucleotide sequence set forth in SEQ ID NO: 1; b) a nucleotide sequence that hybridizes to the sequence set forth in SEQ ID NO: 1; under stringent conditions; and c) a nucleotide sequence that has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to the SEQ ID NO: 1. In another aspect, the invention provides the complete genomic sequence of the hEbola virus EboBun.

[0012] In a related aspect, the invention provides nucleic acid molecules isolated from EboBun, or fragments thereof. **[0013]** In another aspect, the invention provides proteins or polypeptides that are isolated from the EboBun, including viral proteins isolated from cells infected with the virus but not present in comparable uninfected cells; or fragments thereof. In one embodiment of the present invention, the amino acid sequences of the proteins or polypeptides are set forth in SEQ ID NOS: 2-9 and 59, or fragments thereof.

[0014] In a related aspect, the invention provides an isolated polypeptide encoded by the nucleic acid molecule of the inventive hEbola EboIC (Sequence ID No. 10) virus described above.

[0015] In another aspect, the invention provides an isolated hEbola EbolC virus comprising a nucleoi acid molecule comprising a nucleotide sequence selected from the group consisting of: a) a nucleotide sequence set forth in SEQ ID NO: 10; b) a nucleotide sequence that hybridizes to the sequence set forth in SEQ ID NO: 10 under stringent conditions; and c) a nucleotide sequence that has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to the SEQ ID NO: 10. In another aspect, the invention provides the complete genomic sequence of the hEbola virus EbolC.

[0016] In a related aspect, the invention provides nucleic acid molecules isolated from EboIC, or fragments thereof.

[0017] In another aspect, the invention provides proteins or polypeptides that are isolated from the EboIC, including viral proteins isolated from cells infected with the virus but not present in comparable uninfected cells; or fragments thereof. In one embodiment of the present invention, the amino acid sequences of the proteins or polypeptides are set forth in SEQ ID NOs: 11-19, or fragments thereof.

[0018] In a related aspect, the invention provides an isolated polypeptide encoded by the nucleic acid molecule of the inventive hEbola EbolC virus described above.

[0019] In other aspects, the invention relates to the use of the isolated hEbola virus for diagnostic and therapeutic methods based on EbBun, EboIC, or a combination thereof. In one embodiment, the invention provides a method of detecting in a biological sample an antibody immunospecific for the genus of West Afrin Ebola Species constituting hEbola EbBun and EboIC virus using at least one the inventive isolated hEbola virus described herein, or any of the inventive proteins or polypeptides as described herein. In another specific embodiment, the invention provides a method of screening for an antibody which immunospecifically binds and neutralizes hEbola EboBun. Such an antibody is useful for a passive immunization or immunotherapy of a subject infected with hEbola.

[0020] In another aspect, the invention provides an isolated antibody or an antigen-binding fragment thereof which immunospecifically binds to the hEbola virus of the invention described above.

[0021] In other aspects, the invention provides methods for detecting the presence, activity or expression of the Glade of Bundibungyo-Ivory Coast hEbola virus in a biological material, such as cells, blood, saliva, urine, feces and so forth; and specifically at least one of EbBun or EboIC.

[0022] In a related aspect, the invention provides a method for detecting the presence of the inventive hEbola virus described above in a biological sample, the method includes (a) contacting the sample with an agent that selectively binds to a West African hEbola virus; and (b) detecting whether the compound binds to the West African hEbola virus in the sample.

[0023] In another aspect, the invention provides a method for detecting the presence of the inventive polypeptide described above, in a biological sample, said method includes (a) contacting the biological sample with an agent that selectively binds to the polypeptide; and (b) detecting whether the agent binds to the polypeptide in the sample. In another aspect, the invention provides a method for detecting the presence of a first nucleic acid molecule derived from the inventive hEbola virus described above in a biological sample, the method comprising: (a) contacting the biological sample with an agent that selectively binds to the polypeptide; and (b) detecting whether the agent binds to the polypeptide in the sample.

[0024] In another aspect, the invention provides a method for propagating the hEbola virus in host cells comprising infecting the host cells with the inventive isolated hEbola virus described above, culturing the host cells to allow the virus to multiply, and harvesting the resulting virions. Also provided by the present invention are host cells infected with the inventive hEbola virus described above.

[0025] In another aspect, the invention provides a method of detecting in a biological sample the presence of an antibody that immunospecifically binds hEbola virus, the method comprising: (a) contacting the biological sample with the inventive host cell host described above; and (b) detecting the antibody bound to the cell.

[0026] In another aspect, the invention provides vaccine preparations, comprising the inventive hEbola virus, including recombinant and chimeric forms of the virus, nucleic acid molecules comprised by the virus, or protein subunits of the virus. The invention also provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of the inventive hEbola virus described above, and a pharmaceutically acceptable carrier. In one embodiment, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a protein extract of the inventive hEbola virus described above, or a subunit thereof; and a pharmaceutically acceptable carrier. In another, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or a complement thereof, and a pharmaceutically acceptable carrier. In another, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a nucleic acid molecule comprising any of inventive the nucleotide sequences as described above, or a complement thereof, and a pharmaceutically acceptable carrier.

[0027] In a related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of the inventive hEbola virus described above, and a pharmaceutically acceptable carrier. In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of a protein extract of the inventive hEbola virus described above or a subunit thereof, and a pharmaceutically acceptable carrier. In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or a complement thereof, and a pharmaceutically acceptable carrier. In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of a nucleic acid molecule comprising the inventive nucleotide sequence as described above or a complement thereof, and a pharmaceutically acceptable carrier. In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of any of the inventive polypeptides described above.

[0028] In another aspect, the present invention provides pharmaceutical compositions comprising antiviral agents of the present invention and a pharmaceutically acceptable carrier. In a specific embodiment, the antiviral agent of the invention is an antibody that immunospecifically binds hEbola

virus or any hEbola epitope. In another specific embodiment, the antiviral agent is a polypeptide or protein of the present invention or nucleic acid molecule of the invention.

[0029] In a related aspect, the invention provides a pharmaceutical composition comprising a prophylactically or therapeutically effective amount of an anti-hEbola EboBun agent and a pharmaceutically acceptable carrier.

[0030] The invention also provides kits containing compositions and formulations of the present invention. Thus, in another aspect, the invention provides a kit comprising a container containing the inventive immunogenic formulation described above. In another aspect, the invention provides a kit comprising a container containing the inventive vaccine formulation described above. In another, the invention provides a kit comprising a container containing the inventive pharmaceutical composition described above. In another, the invention provides a kit comprising a container containing the inventive vaccine formulation described above. In another, the invention provides a method for identifying a subject infected with the inventive hEbola virus described above, comprising: (a) obtaining total RNA from a biological sample obtained from the subject; (b) reverse transcribing the total RNA to obtain cDNA; and (c) amplifying the cDNA using a set of primers derived from a nucleotide sequence of the inventive hEbola virus described above.

[0031] The invention further relates to the use of the sequence information of the isolated virus for diagnostic and therapeutic methods.

[0032] In another aspect, the present invention provides methods for screening antiviral agents that inhibit the infectivity or replication of hEbola virus or variants thereof.

[0033] The invention further provides methods of preparing recombinant or chimeric forms of hEbola.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIG. 1 represents a Phylogenetic tree comparing full-length genomes of Ebolavirus and Marburg virus by Bayesian analysis;

[0035] FIG. **2** represents an alignment of genomes of novel hEbola EboBun (SEQ ID NO: 1) referred to below as "Ebola Bundibugyo" or "EboBun", and hEbola Zaire (SEQ ID NO: 20); referred to below as "Ebola Zaire '76" or "EboZ" and hEbola Ivory Coast (SEQ ID NO: 10) also referred to below as "EboIC".

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0036] It is to be understood that the present invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

[0037] Due to the sequence divergence of EboBun relative to all previously recognized ebolaviruses, the present invention has utility in design of diagnostic assays to monitor Ebola HF disease in humans and animals, and develop effective antivirals and vaccines.

[0038] The EboBun virus of the present invention is genetically distinct, differing by more than 30% at the genome level from all other known ebolavirus species. The unique nature of this virus created challenges for traditional filovirus molecular based diagnostic assays and genome sequencing approaches. Instead, over 70% of the virus genome was

sequenced using a recently developed random-primed pyrosequencing approach which allowed the rapid development of molecular detection assay which were deployed in the disease outbreak response. This random-primed pyrosequencing draft sequence allowed faster completion of the whole genome sequence using traditional primer walking approach and confirmation that the EboBun virus represented a new ebolavirus species.

Definitions

[0039] The definitions herein provided are operative throughout the entire description of the invention set forth herein, including the Summary of the Invention.

[0040] The term "an antibody or an antibody fragment that immunospecifically binds a polypeptide of the invention" as used herein refers to an antibody or a fragment thereof that immunospecifically binds to the polypeptide encoded by the nucleotide sequence of SEQ ID NO: 1 (EboBun), or a fragment thereof, and does not non-specifically bind to other polypeptides. An antibody or a fragment thereof that immunospecifically binds to the polypeptide of the invention may cross-react with other antigens. Preferably, an antibody or a fragment thereof that immunospecifically binds to a polypeptide of the invention does not cross-react with other antigens. An antibody or a fragment thereof that immunospecifically binds to the polypeptide of the invention can be identified by, for example, immunoassays or other techniques known to those skilled in the art, or otherwise as described herein.

[0041] An "isolated" or "purified" peptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of a polypeptide/protein in which the polypeptide/protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, a polypeptide/ protein that is substantially free of cellular material includes preparations of the polypeptide/protein having less than about 30%, 20%, 10%, 5%, 2.5%, or 1% (by dry weight) of contaminating protein. When the polypeptide/protein is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.

[0042] When polypeptide/protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly, such preparations of the polypeptide/protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than polypeptide/protein fragment of interest. In a preferred embodiment of the present invention, polypeptides/proteins are isolated or purified.

[0043] An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. In a preferred embodiment of the invention, nucleic acid molecules encod-

ing polypeptides/proteins of the invention are isolated or purified. The term "isolated" nucleic acid molecule does not include a nucleic acid that is a member of a library that has not been purified away from other library clones containing other nucleic acid molecules.

[0044] The term "portion" or "fragment" as used herein includes the specified fragment lengths, and all integers in between, inclusive of the specified end points in a specified range, and inclusive of any length up to the full length of a protein, polypeptide, or nucleic acid.

[0045] The term "having a biological activity of the protein" or "having biological activities of the polypeptides of the invention" refers to the characteristics of the polypeptides or proteins having a common biological activity, similar or identical structural domain, and/or having sufficient amino acid identity to the polypeptide encoded by the nucleotide sequence of SEQ ID NO: 1 (EboBun). Such common biological activities of the polypeptides of the invention include antigenicity and immunogenicity.

[0046] The term "under stringent condition" refers to hybridization and washing conditions under which nucleotide sequences having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% identity to each other remain hybridized to each other. Such hybridization conditions are described in, for example but not limited to, Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6; Basic Methods in Molecular Biology, Elsevier Science Publishing Co., Inc., NY (1986), pp. 75-78, and 84-87; and Molecular Cloning, Cold Spring Harbor Laboratory, NY (1982), pp. 387-389, and are well known to those skilled in the art. A preferred, non-limiting example of stringent hybridization conditions is hybridization in 6× sodium chloride/sodium citrate (SSC), 0.5% SDS at about 68° C. followed by one or more washes in 2×SSC, 0.5% SDS at room temperature. Another preferred, non-limiting example of stringent hybridization conditions is hybridization in 6×SSC at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at about 50-65° C.

[0047] The term "variant" as used herein refers either to a naturally occurring genetic mutant of hEbola EboBun, or hEbola EboIC, or a recombinantly prepared variation of these hEbola species, each of which contain one or more mutations in its genome compared to the hEbola of SEQ ID NO: 1 or 10. The term "variant" may also refer either to a naturally occurring variation of a given peptide or a recombinantly prepared variation of a given peptide or protein in which one or more amino acid residues have been modified by amino acid substitution, addition, or deletion.

[0048] "Homology" refers to sequence similarity or, alternatively, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

[0049] The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of identical nucleotide matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. **[0050]** Percent identity between polynucleotide sequences may be determined using one or more computer algorithms or programs known in the art or described herein. For example, percent identity can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the

MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNAS-TAR, Madison, Wis.). CLUSTAL V is described in Higgins, D. G. and P. M. Sharp (1989; CABIOS 5:151-153) and in Higgins, D. G. et al. (1992; CABIOS 8:189-191). For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default.

[0051] Alternatively, a suite of commonly used and freely available sequence comparison algorithms which can be used is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, Md., and on the NCBI World Wide Web site available on the Internet. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively on the Internet via the NCBI World Wide Web site as well. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (Apr. 21, 2000) set at default parameters. Such default parameters may be, for example: Matrix:BLO-SUM62; Reward for match: 1; Penalty for mismatch: -2; Open Gap: 5 and Extension Gap: 2 penalties; Gap×drop-off: 50; Expect: 10; Word Size: 11; Filter: on.

[0052] Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or sequence listing, may be used to describe a length over which percentage identity may be measured.

[0053] The phrases "percent identity" and "% identity", as applied to polypeptide sequences, refer to the percentage of identical residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. The phrases "percent similarity" and "% similarity", as applied to polypeptide sequences, refer to the percentage of residue matches, including identical residue matches and conservative substitutions, between at least two polypeptide sequences aligned using a standardized algorithm. In contrast, conservative substitutions are not included in the calculation of percent identity between polypeptide sequences.

[0054] Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGA-LIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table.

[0055] Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (Apr. 21, 2000) with blastp set at default parameters. Such default parameters may be, for example: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap×drop-off: 50; Expect: 10; Word Size: 3; Filter: on.

[0056] Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or sequence listing, may be used to describe a length over which percentage identity may be measured.

[0057] The term "agent" encompasses any chemical, biochemical, or biological molecule; such as small molecules, proteins, polypeptides, antibodies, nucleic acid molecules including DNA or RNA, and the like.

Methods and Compositions Related to the Inventive hEbola [0058] The present invention is based upon the isolation and identification of a new human Ebola virus species, EboBun and the sequencing of the only other known West African Ebola species EboIC. EboBun was isolated from the patients suffering from hemorrhagic fever in a recent outbreak in Uganda. The isolated virus is a member of the Filov-iridae family, a family of negative sense RNA viruses. Accordingly, the invention relates to the isolated EboBun or EBOIC virus that morphologically and phylogenetically relates to known members filoviridae.

[0059] In another aspect, the invention provides an isolated hEbola virus including a nucleic acid molecule with a nucleotide sequence that is preferably: a) a nucleotide sequence set forth in SEQ ID NO: 1; b) a nucleotide sequence that hybridizes to the sequence set forth in SEQ ID NO: 1 under stringent conditions; or c) a nucleotide sequence that has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to the SEQ ID NO: 1. In one embodiment of the present invention, the hEbola virus is killed. In another, the virus is attenuated. In another, the infectivity of the attenuated hEbola virus is reduced. In another, the infectivity is reduced by at least 5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500-fold, or 10,000-fold. In another, the replication ability of the attenuated hEbola virus is reduced. In another, the replication ability of the attenuated virus is educed by at least 5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500fold, 1,000-fold, or 10,000-fold. In another, the protein synthesis ability of the attenuated virus is reduced. In another, the protein synthesis ability is reduced by at least 5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500-fold, 1,000-fold, or Oct. 4, 2012

10,000-fold. In another, the assembling ability of the attenuated hEbola virus is reduced. In another, the assembling ability of the attenuated virus is reduced by at least 5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500-fold, 1,000-fold, or 10,000-fold. In another, the cytopathic effect of the attenuated hEbola virus is reduced. In another, the cytopathic effect is reduced by at least 5-fold, 10-fold, 25-fold, 50-fold, 100-fold, 250-fold, 500-fold, 1,000-fold, or 10,000fold.

[0060] In another aspect, the invention provides the complete genomic sequence of the hEbola virus EboBun or EboIC. In a specific embodiment, the virus includes a nucleotide sequence of SEQ ID NOs: 1 or 10, respectively.

[0061] In a related aspect, the invention provides nucleic acid molecules isolated from EboBun, EboIC, or fragments thereof. In one embodiment of the present invention, the isolated nucleic acid molecule includes the nucleotide sequence of SEQ ID NOs: 1 or 10, or a complement thereof. In another, the nucleic acid molecule includes a nucleotide sequence having at least 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 4600, 4700, 4800, or 4900 contiguous nucleotides of the nucleotide sequence of SEQ ID NO: 1, or a complement thereof; with the proviso that the nucleotide sequence is not comprised by the nucleotide sequence set forth in SEQ ID NO: 20 (Ebola Zaire nucleotide sequence); or at least 5000, 5500, 5600, 5700, 5800, 5900, 6000, 6100, 6200, 6300, 6400, 6500, or 6600 contiguous nucleotides of the nucleotide sequence of SEQ ID NOs: 1 or 10, or a complement thereof. In another embodiment, the isolated nucleic acid molecule includes a nucleotide sequence that encodes the EboBun amino acid sequence of SEQ ID NOs: 2-9 or 59, the EboIC amino acid sequence of SEQ ID NOs: 11-19, or a complement of the nucleotide sequence that encodes the EboBun amino acid sequences of SEQ ID NOs: 2-9 or 59 or the EboIC amino acid sequences of SEQ ID NOs: 11-19. In another, the isolated nucleic acid molecule hybridizes under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NOs: 1 or 10 or a complement thereof, wherein the nucleic acid molecule encodes an amino acid sequence which has a biological activity exhibited by a polypeptide encoded by the nucleotide sequence of SEQ ID NOs: 1 or 10. In another, nucleic acid molecule is RNA. In another, nucleic acid molecule is DNA. [0062] In another aspect, the invention provides proteins or polypeptides that are isolated from the EboBun, including viral proteins isolated from cells infected with the virus but not present in comparable uninfected cells. In one embodiment of the present invention, the amino acid sequences of the proteins or polypeptides are set forth in SEQ ID NOs: 2-9, 59, or 11-19, or fragments thereof. In one embodiment, polypeptides or proteins of the present invention have a biological activity of the protein (including antigenicity and/or immunogenicity) encoded by the sequence of SEQ ID NOs: 1 or 10. In another, the polypeptides or the proteins of the present invention have a biological activity of at least one protein having the amino acid sequence (including antigenicity and/ or immunogenicity) set forth in SEQ ID NOS: 2-9, 59, or 11-19, or a fragment thereof.

[0063] In a related aspect, the invention provides an isolated polypeptide encoded by the nucleic acid molecule of the invention described above. In one embodiment of the present invention, the isolated polypeptide includes the amino acid sequence selected from the group consisting of: a) an amino acid sequence set forth in SEQ ID NO: 2, 3, 4, 5, 6, 7, 8, or 9; 11, 12, 13, 14, 15, 16, 17, 18 or 19; and b) an amino acid sequence that has 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology to the amino acid sequence according to a). In another, the isolated polypeptide comprises the amino acid sequence having at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 210, 220, 230, 240 or 250 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 5 or 18 (VP24); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 210, 220, 230, 240, 250, 260, 270, 280 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 6 or 17 (VP30); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 310, or 320 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 8 or 13 (VP40); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 310, 320, 330, or 340 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 7 or 12 (VP35); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 310, 320, 330, 340, 350, 360, or 370 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 4 or 15 (SGP); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 310, 320, 330, 340, 350, 360, or 370 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 59 or 16 (SSGP); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 450, 500, 550, 600, 610, 620, 630, 640, 650, 660, or 670 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 9 or 14 (GP); 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 450, 500, 550, 600, 650, 700, 710, 720, or 730 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 3 or 11 (NP); or 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, 2000, 2050, 2100, 2150, 2160, 2170, 2180, 2190, or 2200 contiguous amino acid residues of the amino acid sequence of SEQ ID NOs: 2 or 19 (L).

[0064] In other aspects, the invention relates to the use of an isolated West African hEbola virus for diagnostic and therapeutic methods. In one embodiment, the invention provides a method of detecting in a biological sample an antibody immunospecific for the hEbola virus using the inventive isolated hEbola virus described herein, or any of the inventive proteins or polypeptides as described herein. In another specific embodiment, the invention provides a method of screening for an antibody which immunospecifically binds and neutralizes hEbola EboBun or EboIC or a combination thereof. Such an antibody is useful for a passive immunization or immunotherapy of a subject infected with hEbola.

[0065] In another aspect, the invention provides an isolated antibody or an antigen-binding fragment thereof which immunospecifically binds to a West African genus hEbola virus of the invention described above, and illustratively including EboBun or EboIC. In one embodiment of the present invention, the isolated antibody or an antigen-binding fragment thereof neutralizes a West African genus hEbola virus. In another, the isolated antibody or an antigen-binding fragment thereof immunospecifically binds to the inventive polypeptide described above. The invention further provides antibodies that specifically bind a polypeptide of the invention.

tion encoded by the nucleotide sequence of SEQ ID NOs: 1 (EboBun) or 10 (EboIC), a fragment thereof, or encoded by a nucleic acid comprising a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NOs: 1 (EboBun) or 10 (EboIC) and/or any hEbola EboBun epitope, having one or more biological activities of a polypeptide of the invention. These polypeptides include those shown in SEQ ID NOs: 2-9, 59, and 11-19. Such antibodies include, but are not limited to, polyclonal, monoclonal, bi-specific, multi-specific, human, humanized, chimeric antibodies, single chain antibodies, Fab fragments, $F(ab')_2$ fragments, disulfide-linked Fvs, intrabodies and fragments containing either a VL or VH domain or even a complementary determining region (CDR) that specifically binds to a polypeptide of the invention.

[0066] In other aspects, the invention provides methods for detecting the presence, activity or expression of the hEbola virus of the invention in a biological material, such as cells, blood, saliva, urine, and so forth. The increased or decreased activity or expression of the hEbola virus in a sample relative to a control sample can be determined by contacting the biological material with an agent which can detect directly or indirectly the presence, activity or expression of the hEbola virus. In one embodiment of the present invention, the detecting agents are the antibodies or nucleic acid molecules of the present invention. Antibodies of the invention can also be used to treat hemorrhagic fever.

[0067] In a related aspect, the invention provides a method for detecting the presence of the inventive hEbola virus described above in a biological sample, the method comprising: (a) contacting the sample with an agent that selectively binds to the hEbola virus; and (b) detecting whether the compound binds to the hEbola virus in the sample. In one embodiment of the present invention, the biological sample is selected from the group consisting of cells; blood; serum; plasma; feces; rectal, vaginal and conjunctival swabs. In another, the agent that binds to the virus is an antibody. In another, the agent that binds to the virus is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or a complement thereof. In another, the agent that binds to the virus is a nucleic acid molecule comprising a nucleotide sequence having at least 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 4600, 4700, 4800, 4900, 5000, 5500, 5600, 5700, 5800, 5900, 6000, 6100, 6200, 6300, 6400, 6500, or 6600 contiguous nucleotides of the nucleotide sequence of SEQ ID NOs: 1 or 10, or a complement thereof. [0068] In another aspect, the invention provides a method for detecting the presence of the inventive polypeptide described above, in a biological sample, the method comprising: (a) contacting the biological sample with an agent that selectively binds to the polypeptide; and (b) detecting whether the agent binds to the polypeptide in the sample. In one embodiment of the present invention, the biological sample is selected from the group consisting of cells; blood; serum; plasma; feces; rectal, vaginal and conjunctival swabs. In another, the agent that binds to the polypeptide is an antibody or an antigen-binding fragment thereof.

[0069] In another aspect, the invention provides a method for detecting the presence of a first nucleic acid molecule derived from the inventive hEbola virus described above in a biological sample, the method includes (a) contacting the biological sample with an agent that selectively binds to the nucleic acid; and (b) detecting whether the agent binds to the nucleotide in the sample. In one embodiment of the present invention, the agent that binds to the first nucleic acid molecule is a second nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1 or a complement thereof. In another, the second nucleic acid molecule comprises at least 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 4000, 4500, 4600, 4700, 4800, 4900, 5000, 5500, 5600, 5700, 5800, 5900, 6000, 6100, 6200, 6300, 6400, 6500, or 6600 contiguous nucleotides of the nucleotide sequence of SEQ ID NOs: 1 or 10, or a complement thereof.

[0070] In another aspect, the invention provides a method for propagating the hEbola virus in host cells comprising infecting the host cells with an inventive isolated West African hEbola virus described above, culturing the host cells to allow the virus to multiply, and harvesting the resulting virions. Also provided by the present invention are host cells infected with the inventive hEbola virus described above. In one embodiment of the present invention, the host cell is a primate cell.

[0071] In another aspect, the invention provides a method of detecting in a biological sample the presence of an antibody that immunospecifically binds hEbola virus, the method includes: (a) contacting the biological sample with the inventive host cell described above; and (b) detecting the antibody bound to the cell.

[0072] In another aspect, the invention provides vaccine preparations, including the inventive hEbola virus, including recombinant and chimeric forms of the virus, nucleic acid molecules comprised by the virus, or protein subunits of the virus. In one embodiment, the vaccine preparations of the present invention includes live but attenuated hEbola virus with or without pharmaceutically acceptable carriers, including adjuvants. In another, the vaccine preparations of the invention comprise an inactivated or killed hEbola EboBun virus, EboIC virus, or a combination thereof, with or without pharmaceutically acceptable carriers, including adjuvants. Such attenuated or inactivated viruses may be prepared by a series of passages of the virus through the host cells or by preparing recombinant or chimeric forms of virus. Accordingly, the present invention further provides methods of preparing recombinant or chimeric forms of the inventive hEbola viruses described herein.

[0073] In another specific embodiment, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of the inventive hEbola virus described above, and a pharmaceutically acceptable carrier. In another, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a protein extract of the inventive hEbola virus described above, or a subunit thereof; and a pharmaceutically acceptable carrier. In another aspect, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOs: 1 or 10, or a complement thereof, and a pharmaceutically acceptable carrier. In another, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a nucleic acid molecule comprising any of inventive the nucleotide sequences as described above, or a complement thereof, and a pharmaceutically acceptable carrier. In another aspect, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a protein extract of the inventive hEbola virus described above, or a subunit thereof; and a pharmaceutically acceptable carrier. In another aspect, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS: 1 or 10, or a complement thereof, and a pharmaceutically acceptable carrier. In another, the invention provides a vaccine formulation comprising a therapeutically or prophylactically effective amount of a nucleic acid molecule comprising any of inventive the nucleotide sequences as described above, or a complement thereof, and a pharmaceutically acceptable carrier.

[0074] In yet another specific embodiment, the vaccine preparations of the present invention comprise a nucleic acid or fragment of the hEbola virus, e.g., the virus having Accession No. 200706291, or nucleic acid molecules having the sequence of SEQ ID NOS: 1 or 10, or a fragment thereof. In another, the vaccine preparations comprise a polypeptide of the invention encoded by the nucleotide sequence of SEQ ID NOS: 1 or 10 or a fragment thereof. In a specific embodiment, the vaccine preparations comprise polypeptides of the invention as shown in SEQ ID NOS: 2-9, 59, or 11-19, or encoded by the nucleotide sequence of SEQ ID NOS: 1 or 10, or a fragment thereof.

[0075] Furthermore, the present invention provides methods for treating, ameliorating, managing or preventing hemorrhagic fever by administering the vaccine preparations or antibodies of the present invention alone or in combination with adjuvants, or other pharmaceutically acceptable excipients. Furthermore, the present invention provides methods for treating, ameliorating, managing, or preventing hemorrhagic fever by administering the inventive compositions and formulations including the vaccine preparations or antibodies of the present invention alone or in combination with antivirals [e.g., amantadine, rimantadine, gancyclovir, acyclovir, ribavirin, penciclovir, oseltamivir, foscamet zidovudine (AZT), didanosine (ddI), lamivudine (3TC), zalcitabine (ddC), stavudine (d4T), nevirapine, delavirdine, indinavir, ritonavir, vidarabine, nelfinavir, saquinavir, relenza, tamiflu, pleconaril, interferons, etc.], steroids and corticosteroids such as prednisone, cortisone, fluticasone and glucocorticoid, antibiotics, analgesics, bronchodilators, or other treatments for respiratory and/or viral infections.

[0076] In a related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of the inventive hEbola virus described above, and a pharmaceutically acceptable carrier.

[0077] In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of a protein extract of the inventive hEbola virus described above or a subunit thereof, and a pharmaceutically acceptable carrier.

[0078] In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOs: 1, 10, a combination thereof, or a complement thereof, and a pharmaceutically acceptable carrier.

[0079] In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of a nucleic acid molecule comprising the

inventive nucleotide sequence as described above or a complement thereof, and a pharmaceutically acceptable carrier.

[0080] In another related aspect, the invention provides an immunogenic formulation comprising an immunogenically effective amount of any of the inventive polypeptides described above.

[0081] In another aspect, the present invention provides pharmaceutical compositions comprising antiviral agents of the present invention and a pharmaceutically acceptable carrier. In a specific embodiment, the antiviral agent of the invention is an antibody that immunospecifically binds hEbola virus or any hEbola epitope. In another specific embodiment, the antiviral agent is a polypeptide or protein of the present invention or nucleic acid molecule of the invention.

[0082] In a related aspect, the invention provides a pharmaceutical composition comprising a prophylactically or therapeutically effective amount of an anti-hEbola EboBun agent and a pharmaceutically acceptable carrier. In one embodiment of the present invention, the anti-hEbola EboBun agent is an antibody or an antigen-binding fragment thereof which immunospecifically binds to the hEbola virus of Deposit Accession No. 200706291, or polypeptides or protein derived therefrom. In another, the anti-hEbola agent is a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOs: 1, 10, a combination thereof, or a fragment thereof. In another, the anti-hEbola agent is a polypeptide encoded by a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOs: 1, 10, a combination thereof, or a fragment thereof having a biological activity of the polypeptide.

[0083] The invention also provides kits containing compositions and formulations of the present invention. Thus, in another aspect, the invention provides a kit comprising a container containing the inventive immunogenic formulation described above.

[0084] In another aspect, the invention provides a kit includes a container containing the inventive vaccine formulation described above.

[0085] In another aspect, the invention provides a kit including a container containing the inventive pharmaceutical composition described above.

[0086] In another aspect, the invention provides a kit including a container containing the inventive vaccine formulation described above.

[0087] In another aspect, the invention provides a method for identifying a subject infected with the inventive hEbola virus described above, including: (a) obtaining total RNA from a biological sample obtained from the subject; (b) reverse transcribing the total RNA to obtain cDNA; and (c) amplifying the cDNA using a set of primers derived from a nucleotide sequence of the inventive hEbola virus described above.

[0088] In one embodiment of the present invention, the set of primers are derived from the nucleotide sequence of the genome of the hEbola virus of Deposit Accession No. 200706291. In another, the set of primers are derived from the nucleotide sequence of SEQ ID NOs: 1 or 10 or any of the inventive nucleotide sequences as described above, or a complement thereof.

[0089] The invention further relates to the use of the sequence information of the isolated virus for diagnostic and therapeutic methods. In a specific embodiment, the invention provides nucleic acid molecules which are suitable for use as primers consisting of or including the nucleotide sequence of

SEQ ID NOs: 1 or 10, or a complement thereof, or at least a portion of the nucleotide sequence thereof. In another specific embodiment, the invention provides nucleic acid molecules which are suitable for hybridization to the inventive hEbola nucleic acid; including, but not limited to PCR primers, Reverse Transcriptase primers, probes for Southern analysis or other nucleic acids, e.g., consisting of or including the nucleotide sequence of SEQ ID NOs: 1, 10 a combination thereof, a complement thereof, or a portion thereof. The invention further encompasses chimeric or recombinant viruses encoded in whole or in part by the nucleotide sequences.

[0090] In another aspect, the present invention provides methods for screening antiviral agents that inhibit the infectivity or replication of hEbola virus or variants thereof.

[0091] The invention further provides methods of preparing recombinant or chimeric forms of hEbola.

[0092] In another aspect, the invention provides vaccine preparations including the hEbola virus, including recombinant and chimeric forms of the virus, or subunits of the virus. The present invention encompasses recombinant or chimeric viruses encoded by viral vectors derived from the genome of the inventive hEbola virus described herein or natural variants thereof. In a specific embodiment, a recombinant virus is one derived from the hEbola virus of Deposit Accession No. 200706291. It is recognized that natural variants of the inventive hEbola viruses described herein comprise one or more mutations, including, but not limited to, point mutations, rearrangements, insertions, deletions etc., to the genomic sequence. It is recognized that the mutations may or may not result in a phenotypic change.

[0093] In another specific embodiment, a chimeric virus of the invention is a recombinant hEbola EboBun or EboIC virus which further comprises a heterologous nucleotide sequence. In accordance with the invention, a chimeric virus may be encoded by a nucleotide sequence in which heterologous nucleotide sequences have been added to the genome or in which endogenous or native nucleotide sequences have been replaced with heterologous nucleotide sequences.

[0094] According to the present invention, the chimeric viruses are encoded by the viral vectors of the invention which further comprise a heterologous nucleotide sequence. In accordance with the present invention a chimeric virus is encoded by a viral vector that may or may not include nucleic acids that are non-native to the viral genome. In accordance with the invention a chimeric virus is encoded by a viral vector to which heterologous nucleotide sequences have been added, inserted or substituted for native or non-native sequences. In accordance with the present invention, the chimeric virus may be encoded by nucleotide sequences derived from different species or variants of hEbola virus. In particular, the chimeric virus is encoded by nucleotide sequences that encode antigenic polypeptides derived from different species or variants of hEbola virus.

[0095] A chimeric virus may be of particular use for the generation of recombinant vaccines protecting against two or more viruses (Tao et al., J. Virol. 72, 2955-2961; Durbin et al., 2000, J. Virol. 74, 6821-6831; Skiadopoulos et al., 1998, J. Virol. 72, 1762-1768 (1998); Teng et al., 2000, J. Virol. 74, 9317-9321). For example, it can be envisaged that a virus vector derived from the hEbola virus expressing one or more proteins of variants of hEbola virus including hEbola EboBun, or vice versa, will protect a subject vaccinated with

such vector against infections by both the native hEbola and the variant. Attenuated and replication-defective viruses may be of use for vaccination purposes with live vaccines as has been suggested for other viruses. (See, for example, PCT WO 02/057302, at pp. 6 and 23; and United States Patent Application Publication 2008/0069838 incorporated by reference herein).

[0096] In accordance with the present invention the heterologous sequence to be incorporated into the viral vectors encoding the recombinant or chimeric viruses of the invention include sequences obtained or derived from different species or variants of hEbola.

[0097] In certain embodiments, the chimeric or recombinant viruses of the invention are encoded by viral vectors derived from viral genomes wherein one or more sequences, intergenic regions, termini sequences, or portions or entire ORF have been substituted with a heterologous or non-native sequence. In certain embodiments of the invention, the chimeric viruses of the invention are encoded by viral vectors derived from viral genomes wherein one or more heterologous sequences have been inserted or added to the vector.

[0098] The selection of the viral vector may depend on the species of the subject that is to be treated or protected from a viral infection. If the subject is human, then an attenuated hEbola virus can be used to provide the antigenic sequences. **[0099]** In accordance with the present invention, the viral vectors can be engineered to provide antigenic sequences which confer protection against infection by the inventive hEbola and natural variants thereof. The viral vectors may be engineered to provide one, two, three or more antigenic sequences. In accordance with the present invention the antigenic sequences may be derived from the same virus, from different species or variants of the same type of virus, or from different viruses.

[0100] The expression products and/or recombinant or chimeric virions obtained in accordance with the invention may advantageously be utilized in vaccine formulations. The expression products and chimeric virions of the present invention may be engineered to create vaccines against a broad range of pathogens, including viral and bacterial antigens, tumor antigens, allergen antigens, and auto antigens involved in autoimmune disorders. One way to achieve this goal involves modifying existing hEbola genes to contain foreign sequences in their respective external domains. Where the heterologous sequences are epitopes or antigens of pathogens, these chimeric viruses may be used to induce a protective immune response against the disease agent from which these determinants are derived. In particular, the chimeric virions of the present invention may be engineered to create vaccines for the protection of a subject from infections with hEbola virus and variants thereof.

[0101] Thus, the present invention further relates to the use of viral vectors and recombinant or chimeric viruses to formulate vaccines against a broad range of viruses and/or antigens. The present invention also encompasses recombinant viruses including a viral vector derived from the hEbola or variants thereof which contains sequences which result in a virus having a phenotype more suitable for use in vaccine formulations, e.g., attenuated phenotype or enhanced antigenicity. The mutations and modifications can be in coding regions, in intergenic regions and in the leader and trailer sequences of the virus.

[0102] The invention provides a host cell including a nucleic acid or a vector according to the invention. Plasmid or

viral vectors containing the polymerase components of hEbola virus are generated in prokaryotic cells for the expression of the components in relevant cell types (bacteria, insect cells, eukaryotic cells). Plasmid or viral vectors containing full-length or partial copies of the hEbola genome will be generated in prokaryotic cells for the expression of viral nucleic acids in vitro or in vivo. The latter vectors optionally contain other viral sequences for the generation of chimeric viruses or chimeric virus proteins, optionally lack parts of the viral genome for the generation of replication defective virus, and optionally contain mutations, deletions or insertions for the generation of attenuated viruses. In addition, the present invention provides a host cell infected with hEbola virus of Deposit Accession No. 200706291,

[0103] Infectious copies of West African hEbola (being wild type, attenuated, replication-defective or chimeric) are optionally produced upon co-expression of the polymerase components according to the state-of-the-art technologies described above.

[0104] In addition, eukaryotic cells, transiently or stably expressing one or more full-length or partial hEbola proteins are optionally used. Such cells are preferably made by transfection (proteins or nucleic acid vectors), infection (viral vectors) or transduction (viral vectors) and are useful for complementation of mentioned wild type, attenuated, replication-defective or chimeric viruses.

[0105] The viral vectors and chimeric viruses of the present invention optionally modulate a subject's immune system by stimulating a humoral immune response, a cellular immune response or by stimulating tolerance to an antigen. As used herein, a subject means: humans, primates, horses, cows, sheep, pigs, goats, dogs, cats, avian species and rodents.

Formulation of Vaccines and Antivirals

[0106] In a preferred embodiment, the invention provides a proteinaceous molecule or hEbola virus specific viral protein or functional fragment thereof encoded by a nucleic acid according to the invention. Useful proteinaceous molecules are for example derived from any of the genes or genomic fragments derivable from the virus according to the invention, preferably the GP, L, NP, sGP, VP24, VP30, VP35, and VP 40 proteins described herein. Such molecules, or antigenic fragments thereof, as provided herein, are for example useful in diagnostic methods or kits and in pharmaceutical compositions such as subunit vaccines. Particularly useful are polypeptides encoded by the nucleotide sequence of SEQ ID NOs: 1 or 10; or antigenic fragments thereof for inclusion as antigen or subunit immunogen, but inactivated whole virus can also be used. Particularly useful are also those proteinaceous substances that are encoded by recombinant nucleic acid fragments of the hEbola genome, of course preferred are those that are within the preferred bounds and metes of ORFs, in particular, for eliciting hEbola specific antibody or T cell responses, whether in vivo (e.g. for protective or therapeutic purposes or for providing diagnostic antibodies) or in vitro (e.g. by phage display technology or another technique useful for generating synthetic antibodies).

[0107] It is recognized that numerous variants, analogues, or homologues of EboBun polypeptides are within the scope of the present invention including amino acid substitutions, alterations, modifications, or other amino acid changes that increase, decrease, or do not alter the function or immunogenic propensity of the inventive immunogen or vaccine. Several post-translational modifications are similarly envi-

sioned as within the scope of the present invention illustratively including incorporation of a non-naturally occurring amino acid(s), phosphorylation, glycosylation, sulfation, and addition of pendent groups such as biotynlation, fluorophores, lumiphores, radioactive groups, antigens, or other molecules.

[0108] Methods of expressing and purifying natural or recombinant peptides and proteins are well known in the art. Illustratively, peptides and proteins are recombinantly expressed in eukaryotic cells. Exemplary eukaryotic cells include yeast, HeLa cells, 293 cells, COS cells, Chinese hamster ovary cells (CHO), and many other cell types known in the art. Both eukaryotic and prokaryotic expression systems and cells are available illustratively from Invitrogen Corp., Carlsbad, Calif. It is appreciated that cell-free expression systems are similarly operable.

[0109] In a preferred embodiment an immunogenic polypeptide is a full length EboBun protein. Preferably, an immunogen is a full length EboBun protein of SEQ ID NOs: 2-9 or 59, or EboIC SEQ ID NOs: 11-19, or a fragment thereof as described herein. Preferably, an immunogen is has a minimum of 5 amino acids. As used herein an immunogen is preferably a polypeptide. In the context of an immunogenic polypeptide the terms immunogen, polypeptide, and antigen are used interchangeably.

[0110] Modifications and changes can be made in the structure of the inventive immunogens that are the subject of the application and still obtain a molecule having similar or improved characteristics as the wild-type sequence (e.g., a conservative amino acid substitution). For example, certain amino acids are optionally substituted for other amino acids in a sequence without appreciable loss of immunogenic activity. Because it is the interactive capacity and nature of a polypeptide that defines that polypeptide's biological functional activity, certain amino acid sequence and nevertheless obtain a polypeptide with like or improved properties. Optionally, a polypeptide is used that has less or more immunogenic activity compared to the wild-type sequence.

[0111] In making such changes, the hydropathic index of amino acids is preferably considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a polypeptide is generally understood in the art. It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still result in a polypeptide with similar biological activity. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. Those indices are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cysteine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine 5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

[0112] It is believed that the relative hydropathic character of the amino acid determines the secondary structure of the resultant polypeptide, which in turn defines the interaction of the polypeptide with other molecules, such as enzymes, substrates, receptors, antibodies, antigens, and the like. It is known in the art that an amino acid can be substituted by another amino acid having a similar hydropathic index and still obtain a functionally equivalent immunogen. In such changes, the substitution of amino acids whose hydropathic

indices are within ± 2 is preferred, those within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

[0113] As outlined above, amino acid substitutions are generally based on the relative similarity of the amino acid sidechain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include (original residue: exemplary substitution): (Ala: Glv, Ser), (Arg: Lys), (Asn: Gln, His), (Asp: Glu, Cys, Ser), (Gln: Asn), (Glu: Asp), (Gly: Ala), (His: Asn, Gln), (Ile: Leu, Val), (Leu: Ile, Val), (Lys: Arg), (Met: Leu, Tyr), (Ser: Thr), (Thr: Ser), (Tip: Tyr), (Tyr: Trp, Phe), and (Val: Ile, Leu). Embodiments of this disclosure thus contemplate functional or biological equivalents of a polypeptide and immunogen as set forth above. In particular, embodiments of the polypeptides and immunogens optionally include variants having about 50%, 60%, 70%, 80%, 90%, and 95% sequence identity to the polypeptide of interest.

[0114] The invention provides vaccine formulations for the prevention and treatment of infections with hEbola virus. In certain embodiments, the vaccine of the invention comprises recombinant and chimeric viruses of the hEbola virus. In certain embodiments, the virus is attenuated.

[0115] In another embodiment of this aspect of the invention, inactivated vaccine formulations are prepared using conventional techniques to "kill" the chimeric viruses. Inactivated vaccines are "dead" in the sense that their infectivity has been destroyed. Ideally, the infectivity of the virus is destroyed without affecting its immunogenicity. In order to prepare inactivated vaccines, the chimeric virus may be grown in cell culture or in the allantois of the chick embryo, purified by zonal ultracentrifugation, inactivated by formal-dehyde or β -propiolactone, and pooled. The resulting vaccine is usually inoculated intramuscularly or intranasally.

[0116] Inactivated viruses are optionally formulated with a suitable adjuvant in order to enhance the immunological response. Such adjuvants illustratively include but are not limited to mineral gels, e.g., aluminum hydroxide; surface active substances such as lysolecithin, pluronic polyols, polyanions; peptides; oil emulsions; and potentially useful human adjuvants such as BCG and *Corynebacterium parvum*.

[0117] In another aspect, the present invention also provides DNA vaccine formulations including a nucleic acid or fragment of the inventive hEbola virus, e.g., the virus having Accession No. 200706291, or nucleic acid molecules having the sequence of SEQ ID NOs: 1 or 10, or a fragment thereof. In another specific embodiment, the DNA vaccine formulations of the present invention comprise a nucleic acid or fragment thereof encoding the antibodies which immunospecifically bind hEbola viruses. In DNA vaccine formulations, a vaccine DNA comprises a viral vector, such as that derived from the hEbola virus, bacterial plasmid, or other expression vector, bearing an insert including a nucleic acid molecule of the present invention operably linked to one or more control elements, thereby allowing expression of the vaccinating proteins encoded by the nucleic acid molecule in a vaccinated subject. Such vectors can be prepared by recombinant DNA technology as recombinant or chimeric viral vectors carrying a nucleic acid molecule of the present invention.

[0118] A nucleic acid as used herein refers to single- or double-stranded molecules which are optionally DNA,

including the nucleotide bases A, T, C and G, or RNA, including the bases A, U (substitutes for T), C, and G. The nucleic acid may represent a coding strand or its complement. Nucleic acids are optionally identical in sequence to the sequence which is naturally occurring or include alternative codons which encode the same amino acid as that which is found in the naturally occurring sequence. Furthermore, nucleic acids optionally include codons which represent conservative substitutions of amino acids as are well known in the art.

[0119] As used herein, the term "isolated nucleic acid" means a nucleic acid separated or substantially free from at least some of the other components of the naturally occurring organism, for example, the cell structural components commonly found associated with nucleic acids in a cellular environment and/or other nucleic acids. The isolation of nucleic acids is illustratively accomplished by techniques such as cell lysis followed by phenol plus chloroform extraction, followed by ethanol precipitation of the nucleic acids. The nucleic acids of this invention are illustratively isolated from cells according to methods well known in the art for isolating nucleic acids. Alternatively, the nucleic acids of the present invention are optionally synthesized according to standard protocols well described in the literature for synthesizing nucleic acids. Modifications to the nucleic acids of the invention are also contemplated, provided that the essential structure and function of the peptide or polypeptide encoded by the nucleic acid are maintained.

[0120] The nucleic acid encoding the peptide or polypeptide of this invention is optionally part of a recombinant nucleic acid construct comprising any combination of restriction sites and/or functional elements as are well known in the art which facilitate molecular cloning and other recombinant DNA manipulations. Thus, the present invention further provides a recombinant nucleic acid construct including a nucleic acid encoding a polypeptide of this invention.

[0121] Generally, it may be more convenient to employ as the recombinant polynucleotide a cDNA version of the polynucleotide. It is believed that the use of a cDNA version will provide advantages in that the size of the gene will generally be much smaller and more readily employed to transfect the targeted cell than will a genomic gene, which will typically be up to an order of magnitude larger than the cDNA gene. However, the inventor does not exclude the possibility of employing a genomic version of a particular gene where desired.

[0122] As used herein, the terms "engineered" and "recombinant" cells are synonymous with "host" cells and are intended to refer to a cell into which an exogenous DNA segment or gene, such as a cDNA or gene has been introduced. Therefore, engineered cells are distinguishable from naturally occurring cells which do not contain a recombinantly introduced exogenous DNA segment or gene. A host cell is optionally a naturally occurring cell that is transformed with an exogenous DNA segment or gene or a cell that is not modified. A host cell preferably does not possess a naturally occurring gene encoding RSV G protein. Engineered cells are, thus, cells having a gene or genes introduced through the hand of man. Recombinant cells illustratively include those having an introduced cDNA or genomic DNA, and also include genes positioned adjacent to a promoter not naturally associated with the particular introduced gene.

[0123] To express a recombinant encoded polypeptide in accordance with the present invention one optionally pre-

pares an expression vector that comprises a polynucleotide under the control of one or more promoters. To bring a coding sequence "under the control of" a promoter, one positions the 5' end of the translational initiation site of the reading frame generally between about 1 and 50 nucleotides "downstream" of (i.e., 3' of) the chosen promoter. The "upstream" promoter stimulates transcription of the inserted DNA and promotes expression of the encoded recombinant protein. This is the meaning of "recombinant expression" in the context used here.

[0124] Many standard techniques are available to construct expression vectors containing the appropriate nucleic acids and transcriptional/translational control sequences in order to achieve protein or peptide expression in a variety of host-expression systems. Cell types available for expression include, but are not limited to, bacteria, such as *E. coli* and *B. subtilis* transformed with recombinant phage DNA, plasmid DNA or cosmid DNA expression vectors.

[0125] Certain examples of prokaryotic hosts illustratively include *E. coli* strain RR1, *E. coli* LE392, *E. coli* B, *E. coli* 1776 (ATCC No. 31537) as well as *E. coli* W3110 (F-, lambda-, prototrophic, ATCC No. 273325); bacilli such as *Bacillus subtilis*; and other enterobacteria such as *Salmonella typhimurium, Serratia marcescens*, and various *Pseudomonas* species.

[0126] In general, plasmid vectors containing replicon and control sequences that are derived from species compatible with the host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as marking sequences that are capable of providing phenotypic selection in transformed cells. For example, *E. coli* is often transformed using pBR322, a plasmid derived from an *E. coli* species. Plasmid pBR322 contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR322 plasmid, or other microbial plasmid or phage may also contain, or be modified to contain, promoters that can be used by the microbial organism for expression of its own proteins.

[0127] In addition, phage vectors containing replicon and control sequences that are compatible with the host microorganism are optionally used as transforming vectors in connection with these hosts. For example, the phage lambda is optionally utilized in making a recombinant phage vector that can be used to transform host cells, such as *E. coli* LE392.

[0128] Further useful vectors include pIN vectors and pGEX vectors, for use in generating glutathione S-transferase (GST) soluble fusion proteins for later purification and separation or cleavage. Other suitable fusion proteins are those with β -galactosidase, ubiquitin, or the like.

[0129] Promoters that are most commonly used in recombinant DNA construction include the β -lactamase (penicillinase), lactose and tryptophan (trp) promoter systems. While these are the most commonly used, other microbial promoters have been discovered and utilized, and details concerning their nucleotide sequences have been published, enabling those of skill in the art to ligate them functionally with plasmid vectors.

[0130] For expression in *Saccharomyces*, the plasmid YRp7, for example, is commonly used. This plasmid contains the trp1 gene, which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1. The presence of the trp1 lesion as a characteristic of the yeast host cell genome

then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

[0131] Suitable promoting sequences in yeast vectors illustratively include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. In constructing suitable expression plasmids, the termination sequences associated with these genes are also preferably ligated into the expression vector 3' of the sequence desired to be expressed to provide polyadenylation of the mRNA and termination.

[0132] Other suitable promoters, which have the additional advantage of transcription controlled by growth conditions, illustratively include the promoter region for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.

[0133] In addition to microorganisms, cultures of cells derived from multicellular organisms are also operable as hosts. In principle, any such cell culture is operable, whether from vertebrate or invertebrate culture. In addition to mammalian cells, these include insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus); and plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing one or more coding sequences.

[0134] In a useful insect system, *Autographica californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The isolated nucleic acid coding sequences are cloned into non-essential regions (for example the polyhedron gene) of the virus and placed under control of an AcNPV promoter (for example, the polyhedron promoter). Successful insertion of the coding sequences results in the inactivation of the polyhedron gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedron gene). These recombinant viruses are then used to infect *Spodoptera frugiperda* cells in which the inserted gene is expressed (e.g., U.S. Pat. No. 4,215,051).

[0135] Examples of useful mammalian host cell lines include VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, W138, BHK, COS-7, 293, HepG2, NIH3T3, RIN and MDCK cell lines. In addition, a host cell is preferably chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the encoded protein.

[0136] Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems are preferably chosen to ensure the correct modification and processing of the foreign protein expressed. Expression vectors for use in mammalian cells ordinarily include an origin of replication (as necessary), a promoter located in front of the gene to be expressed, along with any necessary ribosome binding sites, RNA splice sites, polyadenylation site, and transcriptional terminator sequences. The origin of replica-

tion is preferably provided either by construction of the vector to include an exogenous origin, such as may be derived from SV40 or other viral (e.g., Polyoma, Adeno, VSV, BPV) source, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.

[0137] The promoters are optionally derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). Further, it is also possible, and may be desirable, to utilize promoter or control sequences normally associated with the desired gene sequence, provided such control sequences are compatible with the host cell systems.

[0138] A number of viral based expression systems are operable herein, for example, commonly used promoters are derived from polyoma, Adenovirus 2, Adenovirus 5, cytome-galovirus and Simian Virus 40 (SV40). The early and late promoters of SV40 virus are useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication. Smaller or larger SV40 fragments are also operable, particularly when there is included the approximately 250 bp sequence extending from the HindIII site toward the BgII site located in the viral origin of replication.

[0139] In cases where an adenovirus is used as an expression vector, the coding sequences are preferably ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene is then optionally inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing proteins in infected hosts.

[0140] Specific initiation signals may also be required for efficient translation of the claimed isolated nucleic acid coding sequences. These signals include the ATG initiation codon and adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may additionally need to be provided. One of ordinary skill in the art would readily be capable of determining this need and providing the necessary signals. It is well known that the initiation codon must be in-frame (or in-phase) with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons are optionally of a variety of origins, both natural and synthetic. The efficiency of expression is optionally enhanced by the inclusion of appropriate transcription enhancer elements or transcription terminators.

[0141] In eukaryotic expression, one will also typically desire to incorporate into the transcriptional unit an appropriate polyadenylation site if one was not contained within the original cloned segment. Typically, the poly A addition site is placed about 30 to 2000 nucleotides "downstream" of the termination site of the protein at a position prior to transcription termination.

[0142] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express constructs encoding proteins are engineered. Rather than using expression vectors that contain viral origins of replication, host cells are preferably transformed with vectors controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched medium, and then are switched to a selective medium. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci, which in turn can be cloned and expanded into cell lines.

[0143] A number of selection systems are illustratively used, including, but not limited, to the herpes simplex virus thymidine kinase, hypoxanthine-guanine phosphoribosyl-transferase and adenine phosphoribosyltransferase genes, in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance is optionally used as the basis of selection for dhfr, which confers resistance to methotrexate; gpt, which confers resistance to methotrexate; gpt, which confers resistance to the aminoglycoside G-418; and hygro, which confers resistance to hygromycin. It is appreciated that numerous other selection systems are known in the art that are similarly operable in the present invention.

[0144] The nucleic acids encoding the peptides and polypeptides of this invention are optionally administered as nucleic acid vaccines. For the purposes of vaccine delivery, a nucleic acid encoding a peptide or polypeptide of this invention is preferably in an expression vector that includes viral nucleic acid including, but not limited to, vaccinia virus, adenovirus, retrovirus and/or adeno-associated virus nucleic acid. The nucleic acid or vector of this invention is optionally in a liposome or a delivery vehicle which can be taken up by a cell via receptor-mediated or other type of endocytosis. The nucleic acid vaccines of this invention are preferably in a pharmaceutically acceptable carrier or administered with an adjuvant. The nucleic acids encoding the peptides and polypeptides of this invention can also be administered to cells in vivo or ex vivo.

[0145] It is contemplated that the isolated nucleic acids of the disclosure are optionally "overexpressed", i.e., expressed in increased levels relative to its natural expression in cells of its indigenous organism, or even relative to the expression of other proteins in the recombinant host cell. Such overexpression is assessed by a variety of methods illustratively including radio-labeling and/or protein purification. However, simple and direct methods are preferred, for example, those involving SDS/PAGE and protein staining or immunoblotting, followed by quantitative analyses, such as densitometric scanning of the resultant gel or blot. A specific increase in the level of the recombinant protein or peptide in comparison to the level in natural in transfected cells is indicative of overexpression, as is a relative abundance of the specific protein in relation to the other proteins produced by the host cell and, e.g., visible on a gel.

[0146] Various heterologous vectors are described for DNA vaccinations against viral infections. For example, the vectors described in the following references, incorporated herein by reference, may be used to express hEbola sequences instead of the sequences of the viruses or other pathogens described; in particular, vectors described for hepatitis B virus (Michel, M. L. et al., 1995, DAN-mediated immunization to the hepatitis B surface antigen in mice: Aspects of the humoral response mimic hepatitis B viral infection in humans, Proc. Natl. Aca. Sci. USA 92:5307-5311; Davis, H. L. et al., 1993, DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody, Human Molec. Genetics 2:1847-1851),

HIV virus (Wang, B. et al., 1993, Gene inoculation generates immune responses against human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 90:4156-4160; Lu, S. et al., 1996, Simian immunodeficiency virus DNA vaccine trial in Macques, J. Virol. 70:3978-3991; Letvin, N. L. et al., 1997, Potent, protective anti-HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination, Proc Natl Acad Sci USA. 94(17):9378-83), and influenza viruses (Robinson, HL et al., 1993, Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA, Vaccine 11:957-960; Ulmer, J. B. et al., Heterologous protection against influenza by injection of DNA encoding a viral protein, Science 259:1745-1749), as well as bacterial infections, such as tuberculosis (Tascon, R. E. et al., 1996, Vaccination against tuberculosis by DNA injection, Nature Med. 2:888-892; Huygen, K. et al., 1996, Immunogenicity and protective efficacy of a tuberculosis DNA vaccine, Nature Med., 2:893-898), and parasitic infection, such as malaria (Sedegah, M., 1994, Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein, Proc. Natl. Acad. Sci. USA 91:9866-9870; Doolan, D. L. et al., 1996, Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+T cell-interferon .delta., and nitric oxide-dependent immunity, J. Exper. Med., 1183:1739-1746).

[0147] Many methods are optionally used to introduce the vaccine formulations described above. These include, but are not limited to, oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, and intranasal routes. Alternatively, in a preferred embodiment the chimeric virus vaccine formulation is introduced via the natural route of infection of the pathogen for which the vaccine is designed. The DNA vaccines of the present invention are optionally administered in saline solutions by injections into muscle or skin using a syringe and needle (Wolff J.A. et al., 1990, Direct gene transfer into mouse muscle in vivo, Science 247:1465-1468; Raz, E., 1994, Intradermal gene immunization: The possible role of DNA uptake in the induction of cellular immunity to viruses, c. Natl. Acd. Sci. USA 91:9519-9523). Another way to administer DNA vaccines operable herein is called the "gene gun" method, whereby microscopic gold beads coated with the DNA molecules of interest is fired into cells (Tang, D. et al., 1992, Genetic immunization is a simple method for eliciting an immune response. Nature 356:152-154). For general reviews of the methods for DNA vaccines, see Robinson, H. L., 1999, DNA vaccines: basic mechanism and immune responses (Review), Int. J. Mol. Med. 4(5):549-555; Barber, B., 1997, Introduction: Emerging vaccine strategies, Seminars in Immunology 9(5):269-270; and Robinson, H. L. et al., 1997, DNA vaccines, Seminars in Immunology 9(5):271-283.

Attenuation of hEbola Virus or Variants Thereof

[0148] The hEbola virus or variants thereof of the invention are optionally genetically engineered to exhibit an attenuated phenotype. In particular, the viruses of the invention exhibit an attenuated phenotype in a subject to which the virus is administered as a vaccine. Attenuation can be achieved by any method known to a skilled artisan. Without being bound by theory, the attenuated phenotype of the viruses of the invention is caused, e.g., by using a virus that naturally does not replicate well in an intended host species, for example, by reduced replication of the viral genome, by reduced ability of the virus to infect a host cell, or by reduced ability of the viral proteins to assemble to an infectious viral particle relative to the wild type species of the virus.

[0149] The attenuated phenotypes of hEbola virus or variants thereof are optionally tested by any method known to the artisan. A candidate virus, for example, is optionally tested for its ability to infect a host or for the rate of replication in a cell culture system. In certain embodiments, growth curves at different temperatures are used to test the attenuated phenotype of the virus. For example, an attenuated virus is able to grow at 35° C., but not at 39° C. or 40° C. In certain embodiments, different cell lines are used to evaluate the attenuated phenotype of the virus. For example, an attenuated virus may only be able to grow in monkey cell lines but not the human cell lines, or the achievable virus titers in different cell lines are different for the attenuated virus. In certain embodiments, viral replication in the respiratory tract of a small animal model, including but not limited to, hamsters, cotton rats, mice and guinea pigs, is used to evaluate the attenuated phenotypes of the virus. In other embodiments, the immune response induced by the virus, including but not limited to, the antibody titers (e.g., assayed by plaque reduction neutralization assay or ELISA) is used to evaluate the attenuated phenotypes of the virus. In a specific embodiment, the plaque reduction neutralization assay or ELISA is carried out at a low dose. In certain embodiments, the ability of the hEbola virus to elicit pathological symptoms in an animal model is tested. A reduced ability of the virus to elicit pathological symptoms in an animal model system is indicative of its attenuated phenotype. In a specific embodiment, the candidate viruses are tested in a monkey model for nasal infection, indicated by mucus production.

[0150] The viruses of the invention are optionally attenuated such that one or more of the functional characteristics of the virus are impaired. In certain embodiments, attenuation is measured in comparison to the wild type species of the virus from which the attenuated virus is derived. In other embodiments, attenuation is determined by comparing the growth of an attenuated virus in different host systems. Thus, for a non-limiting example, hEbola virus or a variant thereof is attenuated when grown in a human host if the growth of the hEbola or variant thereof in the human host is reduced compared to the non-attenuated hEbola or variant thereof.

[0151] In certain embodiments, the attenuated virus of the invention is capable of infecting a host, is capable of replicating in a host such that infectious viral particles are produced. In comparison to the wild type species, however, the attenuated species grows to lower titers or grows more slowly. Any technique known to the skilled artisan can be used to determine the growth curve of the attenuated virus and compare it to the growth curve of the wild type virus.

[0152] In certain embodiments, the attenuated virus of the invention (e.g., a recombinant or chimeric hEbola) cannot replicate in human cells as well as the wild type virus (e.g., wild type hEbola) does. However, the attenuated virus can replicate well in a cell line that lacks interferon functions, such as Vero cells.

[0153] In other embodiments, the attenuated virus of the invention is capable of infecting a host, of replicating in the host, and of causing proteins of the virus of the invention to be inserted into the cytoplasmic membrane, but the attenuated virus does not cause the host to produce new infectious viral particles. In certain embodiments, the attenuated virus infects the host, replicates in the host, and causes viral proteins to be inserted in the cytoplasmic membrane of the host with the

same efficiency as the wild type hEbola. In other embodiments, the ability of the attenuated virus to cause viral proteins to be inserted into the cytoplasmic membrane into the host cell is reduced compared to the wild type virus. In certain embodiments, the ability of the attenuated hEbola virus to replicate in the host is reduced compared to the wild type virus. Any technique known to the skilled artisan can be used to determine whether a virus is capable of infecting a mammalian cell, of replicating within the host, and of causing viral proteins to be inserted into the cytoplasmic membrane of the host.

[0154] In certain embodiments, the attenuated virus of the invention is capable of infecting a host. In contrast to the wild type hEbola, however, the attenuated hEbola cannot be replicated in the host. In a specific embodiment, the attenuated hEbola virus can infect a host and can cause the host to insert viral proteins in its cytoplasmic membranes, but the attenuated virus is incapable of being replicated in the host. Any method known to the skilled artisan can be used to test whether the attenuated hEbola has infected the host and has caused the host to insert viral proteins in its cytoplasmic membranes.

[0155] In certain embodiments, the ability of the attenuated virus to infect a host is reduced compared to the ability of the wild type virus to infect the same host. Any technique known to the skilled artisan can be used to determine whether a virus is capable of infecting a host.

[0156] In certain embodiments, mutations (e.g., missense mutations) are introduced into the genome of the virus, for example, into the sequence of SEQ ID NOS: 1 or 10, or to generate a virus with an attenuated phenotype. Mutations (e.g., missense mutations) can be introduced into the structural genes and/or regulatory genes of the hEbola. Mutations are optionally additions, substitutions, deletions, or combinations thereof. Such variant of hEbola can be screened for a predicted functionality, such as infectivity, replication ability, protein synthesis ability, assembling ability, as well as cytopathic effect in cell cultures. In a specific embodiment, the missense mutation is a heat-sensitive mutation. In another embodiment, the missense mutation is a heat-sensitive mutation. In another embodiment, the missense mutation prevents a normal processing or cleavage of the viral proteins.

[0157] In other embodiments, deletions are introduced into the genome of the hEbola virus, which result in the attenuation of the virus.

[0158] In certain embodiments, attenuation of the virus is achieved by replacing a gene of the wild type virus with a gene of a virus of a different species, of a different subgroup, or of a different variant. In another aspect, attenuation of the virus is achieved by replacing one or more specific domains of a protein of the wild type virus with domains derived from the corresponding protein of a virus of a different species. In certain other embodiments, attenuation of the virus is achieved by deleting one or more specific domains of a protein of the wild type virus.

[0159] When a live attenuated vaccine is used, its safety should also be considered. The vaccine preferably does not cause disease. Any techniques known in the art for improving vaccine safety are operable in the present invention. In addition to attenuation techniques, other techniques are optionally be used. One non-limiting example is to use a soluble heterologous gene that cannot be incorporated into the virion membrane. For example, a single copy of the soluble version

[0160] Various assays are optionally used to test the safety of a vaccine. For example, sucrose gradients and neutralization assays are used to test the safety. A sucrose gradient assay is optionally used to determine whether a heterologous protein is inserted in a virion. If the heterologous protein is inserted in the virion, the virion is preferably tested for its ability to cause symptoms in an appropriate animal model since the virus may have acquired new, possibly pathological, properties.

5.4 Adjuvants and Carrier Molecules

[0161] hEbola-associated antigens are administered with one or more adjuvants. In one embodiment, the hEbola-associated antigen is administered together with a mineral salt adjuvants or mineral salt gel adjuvant. Such mineral salt and mineral salt gel adjuvants include, but are not limited to, aluminum hydroxide (ALHYDROGEL, REHYDRAGEL), aluminum phosphate gel, aluminum hydroxyphosphate (ADJU-PHOS), and calcium phosphate.

[0162] In another embodiment, hEbola-associated antigen is administered with an immunostimulatory adjuvant. Such class of adjuvants include, but are not limited to, cytokines (e.g., interleukin-2, interleukin-7, interleukin-12, granulocyte-macrophage colony stimulating factor (GM-CSF), interferon- γ interleukin-1 β (IL-1 β), and IL-1 β peptide or Sclavo Peptide), cytokine-containing liposomes, triterpenoid glycosides or saponins (e.g., QuilA and QS-21, also sold under the trademark STIMULON, ISCOPREP), Muramyl Dipeptide (MDP) derivatives, such as N-acetyl-muramyl-L-threonyl-D-isoglutamine (Threonyl-MDP, sold under the trademark TERMURTIDE), GMDP, N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine, N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-s-n-glycero-3-hydroxy

phosphoryloxy)-ethylamine, muramyl tripeptide phosphatidylethanolamine (MTP-PE), unmethylated CpG dinucleotides and oligonucleotides, such as bacterial DNA and fragments thereof, LPS, monophosphoryl Lipid A (3D-MLA sold under the trademark MPL), and polyphosphazenes.

[0163] In another embodiment, the adjuvant used is a particular adjuvant, including, but not limited to, emulsions, e.g., Freund's Complete Adjuvant, Freund's Incomplete Adjuvant, squalene or squalane oil-in-water adjuvant formulations, such as SAF and MF59, e.g., prepared with block-cooplymers, such as L-121 (polyoxypropylene/polyoxyetheylene) sold under the trademark PLURONIC L-121, Liposomes, Virosomes, cochleates, and immune stimulating complex, which is sold under the trademark ISCOM.

[0164] In another embodiment, a microparticular adjuvant is used. Microparticular adjuvants include, but are not limited to, biodegradable and biocompatible polyesters, homo- and copolymers of lactic acid (PLA) and glycolic acid (PGA), poly(lactide-co-glycolides) (PLGA) microparticles, polymers that self-associate into particulates (poloxamer particles), soluble polymers (polyphosphazenes), and virus-like particles (VLPs) such as recombinant protein particulates, e.g., hepatitis B surface antigen (HbsAg).

[0165] Yet another class of adjuvants that are optionally used include mucosal adjuvants, including but not limited to heat-labile enterotoxin from *Escherichia coli* (LT), cholera holotoxin (CT) and cholera Toxin B Subunit (CTB) from *Vibrio cholerae*, mutant toxins (e.g., LTK63 and LTR72), microparticles, and polymerized liposomes.

[0166] In other embodiments, any of the above classes of adjuvants are optionally used in combination with each other or with other adjuvants. For example, non-limiting examples of combination adjuvant preparations used to administer the hEbola-associated antigens of the invention include liposomes containing immunostimulatory protein, cytokines, T-cell and/or B-cell peptides, or microbes with or without entrapped IL-2 or microparticles containing enterotoxin. Other adjuvants known in the art are also included within the scope of the invention (see Vaccine Design: The Subunit and Adjuvant Approach, Chap. 7, Michael F. Powell and Mark J. Newman (eds.), Plenum Press, New York, 1995, which is incorporated herein in its entirety).

[0167] The effectiveness of an adjuvant is illustratively determined by measuring the induction of antibodies directed against an immunogenic polypeptide containing a hEbola polypeptide epitope, the antibodies resulting from administration of this polypeptide in vaccines which are also comprised of the various adjuvants.

[0168] The polypeptides are optionally formulated into the vaccine as neutral or salt forms. Pharmaceutically acceptable salts include the acid additional salts (formed with free amino groups of the peptide) and which are formed with inorganic acids, such as, for example, hydrochloric or phosphoric acids, or organic acids such as acetic, oxalic, tartaric, maleic, and the like. Salts formed with free carboxyl groups are optionally derived from inorganic bases, such as, for example, sodium potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine and the like.

[0169] The vaccines of the invention are preferably multivalent or univalent. Multivalent vaccines are made from recombinant viruses that direct the expression of more than one antigen.

[0170] Many methods are operable herein to introduce the vaccine formulations of the invention; these include but are not limited to oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal routes, and via scarification (scratching through the top layers of skin, e.g., using a bifurcated needle).

[0171] The patient to which the vaccine is administered is preferably a mammal, most preferably a human, but is also optionally a non-human animal including but not limited to lower primates, cows, horses, sheep, pigs, fowl (e.g., chickens), goats, cats, dogs, hamsters, mice and rats.

Preparation of Antibodies

[0172] Antibodies that specifically recognize a polypeptide of the invention, such as, but not limited to, polypeptides including the sequence of SEQ ID NOs: 2-9, 59, or 11-19 and other polypeptides as described herein, or hEbola epitope or antigen-binding fragments thereof are used in a preferred embodiment for detecting, screening, and isolating the polypeptide of the invention or fragments thereof, or similar sequences that might encode similar enzymes from the other organisms. For example, in one specific embodiment, an antibody which immunospecifically binds hEbola epitope, or a fragment thereof, is used for various in vitro detection assays, including enzyme-linked immunosorbent assays (ELISA), radioimmunoassays, western blot, etc., for the detection of a polypeptide of the invention or, preferably, hEbola, in samples, for example, a biological material, including cells, cell culture media (e.g., bacterial cell culture media, mammalian cell culture media, insect cell culture media, yeast cell

culture media, etc.), blood, plasma, serum, tissues, sputum, naseopharyngeal aspirates, etc.

[0173] Antibodies specific for a polypeptide of the invention or any epitope of hEbola are optionally generated by any suitable method known in the art. Polyclonal antibodies to an antigen of interest, for example, the hEbola virus from Deposit Accession No. 200706291, or including a nucleotide sequence of SEQ ID NOs: 1 or 10, are optionally produced by various procedures well known in the art. For example, an antigen is optionally administered to various host animals including, but not limited to, rabbits, mice, rats, etc., to induce the production of antisera containing polyclonal antibodies specific for the antigen. Various adjuvants are optionally used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete) adjuvant, mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful adjuvants for humans such as BCG (Bacille Calmette-Guerin) and Corynebacterium parvum. Such adjuvants are also well known in the art.

[0174] Monoclonal antibodies are optionally prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. In one example, monoclonal antibodies are produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas, pp. 563-681 (Elsevier, N.Y., 1981) (both of which are incorporated by reference in their entireties). The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.

[0175] Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art. In a non-limiting example, mice are immunized with an antigen of interest or a cell expressing such an antigen. Once an immune response is detected, e.g., antibodies specific for the antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells. Hybridomas are selected and cloned by limiting dilution. The hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding the antigen. Ascites fluid, which generally contains high levels of antibodies, is optionally generated by inoculating mice intraperitoneally with positive hybridoma clones.

[0176] Antibody fragments which recognize specific epitopes are optionally generated by known techniques. For example, Fab and $F(ab')_2$ fragments are illustratively produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce $F(ab')_2$ fragments). $F(ab')_2$ fragments preferably contain the complete light chain, and the variable region, the CH1 region and the hinge region of the heavy chain.

[0177] The antibodies of the invention or fragments thereof are optionally produced by any method known in the art for

the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.

[0178] The nucleotide sequence encoding an antibody is obtained from any information available to those skilled in the art (i.e., from Genbank, the literature, or by routine cloning and sequence analysis). If a clone containing a nucleic acid encoding a particular antibody or an epitope-binding fragment thereof is not available, but the sequence of the antibody molecule or epitope-binding fragment thereof is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+RNA, isolated from any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR are optionally then cloned into replicable cloning vectors using any method known in the art.

[0179] Once the nucleotide sequence of the antibody is determined, the nucleotide sequence of the antibody is optionally manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., supra; and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties), to generate antibodies having a different amino acid sequence by, for example, introducing amino acid substitutions, deletions, and/or insertions into the epitope-binding domain regions of the antibodies or any portion of antibodies which may enhance or reduce biological activities of the antibodies.

[0180] Recombinant expression of an antibody requires construction of an expression vector containing a nucleotide sequence that encodes the antibody. Once a nucleotide sequence encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof has been obtained, the vector for the production of the antibody molecule is optionally produced by recombinant DNA technology using techniques known in the art as discussed in the previous sections. Methods which are known to those skilled in the art are optionally used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. The nucleotide sequence encoding the heavy-chain variable region, light-chain variable region, both the heavy-chain and lightchain variable regions, an epitope-binding fragment of the heavy- and/or light-chain variable region, or one or more complementarity determining regions (CDRs) of an antibody are optionally cloned into such a vector for expression. Thus, prepared expression vector is optionally then introduced into appropriate host cells for the expression of the antibody. Accordingly, the invention includes host cells containing a polynucleotide encoding an antibody specific for the polypeptides of the invention or fragments thereof.

[0181] The host cell is optionally co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector

encoding a light chain derived polypeptide. The two vectors illustratively contain identical selectable markers which enable equal expression of heavy and light chain polypeptides or different selectable markers to ensure maintenance of both plasmids. Alternatively, a single vector is optionally used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature, 322:52, 1986; and Kohler, Proc. Natl. Acad. Sci. USA, 77:2 197, 1980). The coding sequences for the heavy and light chains optionally include cDNA or genomic DNA.

[0182] In another embodiment, antibodies are generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular embodiment, such phage is utilized to display antigen binding domains, such as Fab and Fv or disulfide-bond stabilized Fv, expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest is optionally selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phages used in these methods are typically filamentous phage, including fd and M13. The antigen binding domains are expressed as a recombinantly fused protein to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the immunoglobulins, or fragments thereof, of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods, 182:41-50, 1995; Ames et al., J. Immunol. Methods, 184:177-186, 1995; Kettleborough et al., Eur. J. Immunol., 24:952-958, 1994; Persic et al., Gene, 187:9-18, 1997; Burton et al., Advances in Immunology, 57:191-280, 1994; PCT application No. PCT/ GB91/01134; PCT publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and U.S. Pat. Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety.

[0183] As described in the above references, after phage selection, the antibody coding regions from the phage is optionally isolated and used to generate whole antibodies, including human antibodies, or any other desired fragments, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')₂ fragments are optionally employed using methods known in the art such as those disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques, 12(6):864-869, 1992; and Sawai et al., AJR1, 34:26-34, 1995; and Better et al., Science, 240:1041-1043, 1988 (each of which is incorporated by reference in its entirety). Examples of techniques operable to produce singlechain Fvs and antibodies include those described in U.S. Pat. Nos. 4,946,778 and 5,258,498; Huston et al., Methods in Enzymology, 203:46-88, 1991; Shu et al., PNAS, 90:7995-7999, 1993; and Skerra et al., Science, 240:1038-1040, 1988.

[0184] Once an antibody molecule of the invention has been produced by any methods described above, or otherwise known in the art, it is then optionally purified by any method known in the art for purification of an immunoglobulin mol-

ecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A or Protein G purification, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique(s) for the purification of proteins. Further, the antibodies of the present invention or fragments thereof are optionally fused to heterologous polypeptide sequences described herein or otherwise known in the art to facilitate purification. Illustrative examples include 6×His tag, FLAG tag, biotin, avidin, or other system.

[0185] For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it is preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a constant region derived from a human immunoglobulin. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science, 229:1202, 1985; Oi et al., BioTechniques, 4:214 1986; Gillies et al., J. Immunol. Methods, 125:191-202, 1989; U.S. Pat. Nos. 5,807,715; 4,816,567; and 4,816,397, which are incorporated herein by reference in their entireties. Humanized antibodies are antibody molecules from non-human species that bind the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and framework regions from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. See, e.g., Queen et al., U.S. Pat. No. 5,585,089; Riechmann et al., Nature, 332:323, 1988, which are incorporated herein by reference in their entireties. Antibodies are humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Pat. Nos. 5,225,539; 5,530,101 and 5,585,089), veneering or resurfacing (EP 592, 106; EP 519,596; Padlan, Molecular Immunology, 28(4/5): 489-498, 1991; Studnicka et al., Protein Engineering, 7(6): 805-814, 1994; Roguska et al., Proc Natl. Acad. Sci. USA, 91:969-973, 1994), and chain shuffling (U.S. Pat. No. 5,565, 332), all of which are hereby incorporated by reference in their entireties.

[0186] Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies are made by a variety of methods known in the art illustratively including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See U.S. Pat. Nos. 4,444,887 and 4,716, 111; and PCT publications WO 98/46645; WO 98/50433; WO 98/24893; WO 98/16654; WO 96/34096; WO 96/33735; and WO 91/10741, each of which is incorporated herein by reference in its entirety.

[0187] Human antibodies are also illustratively produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For an overview of this technology for producing human antibodies, see Lonberg and Huszar, Int. Rev. Immunol., 13:65-93, 1995. For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Pat. Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598, which are incorporated by reference herein in their entireties. In addition, companies such as Abgenix, Inc. (Fremont, Calif.), Medarex (NJ) and Genpharm (San Jose, Calif.) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

[0188] Completely human antibodies which recognize a selected epitope are optionally generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology, 12:899-903, 1988).

[0189] Antibodies fused or conjugated to heterologous polypeptides are optionally used in in vitro immunoassays and in purification methods (e.g., affinity chromatography) known in the art. See e.g., PCT publication No. WO 93/21232; EP 439,095; Naramura et al., Immunol. Lett., 39:91-99, 1994; U.S. Pat. No. 5,474,981; Gillies et al., PNAS, 89:1428-1432, 1992; and Fell et al., J. Immunol., 146:2446-2452, 1991, which are incorporated herein by reference in their entireties.

[0190] Antibodies may also be illustratively attached to solid supports, which are particularly useful for immunoassays or purification of the polypeptides of the invention or fragments, derivatives, analogs, or variants thereof, or similar molecules having the similar enzymatic activities as the polypeptide of the invention. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

Pharmaceutical Compositions and Kits

[0191] The present invention encompasses pharmaceutical compositions including antiviral agents of the present invention. In a specific embodiment, the antiviral agent is preferably an antibody which immunospecifically binds and neutralizes the hEbola virus or variants thereof, or any proteins derived therefrom. In another specific embodiment, the antiviral agent is a polypeptide or nucleic acid molecule of the invention. The pharmaceutical compositions have utility as an antiviral prophylactic agent are illustratively administered to a subject where the subject has been exposed or is expected to be exposed to a virus.

[0192] Various delivery systems are known and operable to administer the pharmaceutical composition of the invention, illustratively, encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, and receptor mediated endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429 4432). Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or muccostaneous linings (e.g., oral mucosa, rectal and intestinal muccosa, etc.) and optionally administered together with other biologically active agents. Administration is systemic

or local. In a preferred embodiment, it is desirable to introduce the pharmaceutical compositions of the invention into the lungs by any suitable route. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

[0193] In a specific embodiment, it is desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment. This administration may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, by means of nasal spray, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, administration can be by direct injection at the site (or former site) infected tissues.

[0194] In another embodiment, the pharmaceutical composition is delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249:1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).

[0195] In yet another embodiment, the pharmaceutical composition is delivered in a controlled release system. In one embodiment, a pump is used (see Langer, supra; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; and Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials are used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J. Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105). In yet another embodiment, a controlled release system is placed in proximity of the composition's target, i.e., the lung, thus, requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).

[0196] Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)) the contents of which are incorporated herein by reference.

[0197] The pharmaceutical compositions of the present invention illustratively include a therapeutically effective amount of a live attenuated, inactivated or killed West African hEbola virus, or recombinant or chimeric hEbola virus, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the pharmaceutical composition is administered. Such pharmaceutical carriers are illustratively sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions are optionally

employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, also contains wetting or emulsifying agents, or pH buffering agents. These compositions optionally take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained release formulations and the like. The composition is optionally formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation illustratively includes standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. The formulation should suit the mode of administration

[0198] In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. The composition also includes an optional solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline is optionally provided so that the ingredients may be mixed prior to administration.

[0199] The pharmaceutical compositions of the invention are illustratively formulated as neutral or salt forms. Pharmaceutically acceptable salts illustratively include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2 ethylamino ethanol, histidine, procaine, etc.

[0200] The amount of the pharmaceutical composition of the invention which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro assays are optionally employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for intravenous administration are generally about 20 to 500 micrograms of active compound per kilogram body weight. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight to 1 mg/kg body weight. Effective doses may be extrapolated from dose response curves derived from in vitro or animal model test systems.

[0201] Suppositories generally contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient.

[0202] The invention also provides a pharmaceutical pack or kit including one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) is a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In a preferred embodiment, the kit contains an antiviral agent of the invention, e.g., an antibody specific for the polypeptides encoded by a nucleotide sequence of SEQ ID NOs: 1 or 10, or as shown in SEQ ID NOs: 2-9, 59, or 11-19, or any hEbola epitope, or a polypeptide or protein of the present invention, or a nucleic acid molecule of the invention, alone or in combination with adjuvants, antivirals, antibiotics, analgesic, bronchodilators, or other pharmaceutically acceptable excipients.

[0203] The present invention further encompasses kits including a container containing a pharmaceutical composition of the present invention and instructions for use.

Detection Assays

[0204] The present invention provides a method for detecting an antibody, which immunospecifically binds to the hEbola virus, in a biological sample, including for example blood, serum, plasma, saliva, urine, feces, etc., from a patient suffering from hEbola infection, and/or hemorrhagic fever. In a specific embodiment, the method including contacting the sample with the hEbola virus, for example, of Deposit Accession No. 200706291, or having a genomic nucleic acid sequence of SEQ ID NOs: 1 or 10, directly immobilized on a substrate and detecting the virus-bound antibody directly or indirectly by a labeled heterologous anti-isotype antibody. In another specific embodiment, the sample is contacted with a host cell which is infected by the hEbola virus, for example, of Deposit Accession No. 200706291, or having a genomic nucleic acid sequence of SEQ ID NOs: 1 or 10, and the bound antibody is optionally detected by immunofluorescent assay. [0205] An exemplary method for detecting the presence or absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample from various sources and contacting the sample with a compound or an agent capable of detecting an epitope or nucleic acid (e.g., mRNA, genomic DNA) of the hEbola virus such that the presence of the hEbola virus is detected in the sample. A preferred agent for detecting hEbola mRNA or genomic RNA of the invention is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic RNA encoding a polypeptide of the invention. The nucleic acid probe is, for example, a nucleic acid molecule including the nucleotide sequence of SEQ ID NOs: 1 or 10, a complement thereof, or a portion thereof, such as an oligonucleotide of at least 15, 20, 25, 30, 50, 100, 250, 500, 750, 1000 or more contiguous nucleotides in length and sufficient to specifically hybridize under stringent conditions to a hEbola mRNA or genomic RNA.

[0206] As used herein, the term "stringent conditions" describes conditions for hybridization and washing under which nucleotide sequences having at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% identity to each other typically remain hybridized to

each other. Such hybridization conditions are described in, for example but not limited to, Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6; Basic Methods in Molecular Biology, Elsevier Science Publishing Co., Inc., N.Y. (1986), pp. 75 78, and 84 87; and Molecular Cloning, Cold Spring Harbor Laboratory, N.Y. (1982), pp. 387 389, and are well known to those skilled in the art. A preferred, non-limiting example of stringent hybridization conditions is hybridization in 6× sodium chloride/sodium citrate (SSC), 0.5% SDS at about 68° C. followed by one or more washes in 2×SSC, 0.5% SDS at room temperature. Another preferred, non-limiting example of stringent hybridization conditions is hybridization in 6×SSC at about 45° C. followed by one or more washes in 0.2×SSC, 0.1% SDS at 50 to 65° C.

[0207] A nucleic acid probe, polynucleotide, oligonucleotide, or other nucleic acid is preferably purified. An "isolated" or "purified" nucleotide sequence is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the nucleotide is derived, or is substantially free of chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of a nucleotide/oligonucleotide in which the nucleotide/oligonucleotide is separated from cellular components of the cells from which it is isolated or produced. Thus, a nucleotide/oligonucleotide that is substantially free of cellular material includes preparations of the nucleotide having less than about 30%, 20%, 10%, 5%, 2.5%, or 1%, (by dry weight) of contaminating material. When nucleotide/oligonucleotide is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly, such preparations of the nucleotide/oligonucleotide have less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or compounds other than the nucleotide/oligonucleotide of interest. In a preferred embodiment of the present invention, the nucleotide/oligonucleotide is isolated or purified.

[0208] In another preferred specific embodiment, the presence of hEbola virus is detected in the sample by a reverse transcription polymerase chain reaction (RT-PCR) using the primers that are constructed based on a partial nucleotide sequence of the genome of hEbola virus, for example, that of Deposit Accession No. 200706291, or having a genomic nucleic acid sequence of SEQ ID NOs: 1 or 10. In a non-limiting specific embodiment, preferred primers to be used in a RT-PCR method are the primers are described in detail herein.

[0209] In more preferred specific embodiment, the present invention provides a real-time quantitative PCR assay to detect the presence of hEbola virus in a biological sample by subjecting the cDNA obtained by reverse transcription of the extracted total RNA from the sample to PCR reactions using the specific primers described in detail herein, and a fluorescence dye, such as SYBR® Green I, which fluoresces when bound nonspecifically to double-stranded DNA. The fluorescence signals from these reactions are captured at the end of extension steps as PCR product is generated over a range of the thermal cycles, thereby allowing the quantitative determination of the viral load in the sample based on an amplification plot.

[0210] A preferred agent for detecting hEbola is an antibody that specifically binds a polypeptide of the invention or any hEbola epitope, preferably an antibody with a detectable label. Antibodies are illustratively polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or $F(ab')_2$) is operable herein.

[0211] The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, optionally via a linker, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it is detectable with fluorescently labeled streptavidin. The detection method of the invention is optionally used to detect mRNA, protein (or any epitope), or genomic RNA in a sample in vitro as well as in vivo. Exemplary in vitro techniques for detection of mRNA include northern hybridizations, in situ hybridizations, RT-PCR, and RNase protection. In vitro techniques for detection of an epitope of hEbola illustratively include enzyme linked immunosorbent assays (ELISAs), western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic RNA include northern hybridizations, RT-PCT, and RNase protection. Furthermore, in vivo techniques for detection of hEbola include introducing into a subject organism a labeled antibody directed against the polypeptide. In one embodiment, the antibody is labeled with a radioactive marker whose presence and location in the subject organism is detected by standard imaging techniques, including autoradiography.

[0212] In a specific embodiment, the methods further involve obtaining a control sample from a control subject, contacting the control sample with a compound or agent capable of detecting hEbola, e.g., a polypeptide of the invention or mRNA or genomic RNA encoding a polypeptide of the invention, such that the presence of hEbola or the polypeptide or mRNA or genomic RNA encoding the polypeptide is detected in the sample, and comparing the absence of hEbola or the polypeptide or mRNA or genomic RNA or genomic RNA encoding the polypeptide is detected in the control sample with the presence of hEbola, or the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.

[0213] The invention also encompasses kits for detecting the presence of hEbola or a polypeptide or nucleic acid of the invention in a test sample. The kit illustratively includes a labeled compound or agent capable of detecting hEbola or the polypeptide or a nucleic acid molecule encoding the polypeptide in a test sample and, in certain embodiments, a means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits optionally include instructions for use.

[0214] For antibody-based kits, the kit illustratively includes: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention or hEbola epitope; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is preferably conjugated to a detectable agent.

[0215] For oligonucleotide-based kits, the kit illustratively includes: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence

encoding a polypeptide of the invention or to a sequence within the hEbola genome; or (2) a pair of primers useful for amplifying a nucleic acid molecule containing an hEbola sequence. The kit optionally includes a buffering agent, a preservative, or a protein stabilizing agent. The kit optionally includes components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit optionally contains a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for use.

Screening Assays to Identify Antiviral Agents

[0216] The invention provides methods for the identification of a compound that inhibits the ability of hEbola virus to infect a host or a host cell. In certain embodiments, the invention provides methods for the identification of a compound that reduces the ability of hEbola virus to replicate in a host or a host cell. Any technique well known to the skilled artisan is illustratively used to screen for a compound useful to abolish or reduce the ability of hEbola virus to infect a host and/or to replicate in a host or a host cell.

[0217] In certain embodiments, the invention provides methods for the identification of a compound that inhibits the ability of hEbola virus to replicate in a mammal or a mammalian cell. More specifically, the invention provides methods for the identification of a compound that inhibits the ability of hEbola virus to infect a mammal or a mammalian cell. In certain embodiments, the invention provides methods for the identification of a compound that inhibits the ability of hEbola virus to replicate in a mammalian cell. In a specification of a compound that inhibits the ability of methods for the identification of a compound that inhibits the ability of methods for the identification of a compound that inhibits the ability of methods wirus to replicate in a mammalian cell. In a specific embodiment, the mammalian cell is a human cell.

[0218] In another embodiment, a cell is contacted with a test compound and infected with the hEbola virus. In certain embodiments, a control culture is infected with the hEbola virus in the absence of a test compound. The cell is optionally contacted with a test compound before, concurrently with, or subsequent to the infection with the hEbola virus. In a specific embodiment, the cell is a mammalian cell. In an even more specific embodiment, the cell is a human cell. In certain embodiments, the cell is incubated with the test compound for at least 1 minute, at least 5 minutes, at least 15 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 5 hours, at least 12 hours, or at least 1 day. The titer of the virus is optionally measured at any time during the assay. In certain embodiments, a time course of viral growth in the culture is determined. If the viral growth is inhibited or reduced in the presence of the test compound, the test compound is identified as being effective in inhibiting or reducing the growth or infection of the hEbola virus. In a specific embodiment, the compound that inhibits or reduces the growth of the hEbola virus is tested for its ability to inhibit or reduce the growth rate of other viruses to test its specificity for the hEbola virus.

[0219] In one embodiment, a test compound is administered to a model animal and the model animal is infected with the hEbola virus. In certain embodiments, a control model animal is infected with the hEbola virus without the administration of a test compound. The test compound is optionally administered before, concurrently with, or subsequent to the infection with the hEbola virus. In a specific embodiment, the model animal is a mammal. In an even more specific embodiment, the model animal is, but is not limited to, a cotton rat, a mouse, or a monkey. The titer of the virus in the model animal is optionally measured at any time during the assay. In certain embodiments, a time course of viral growth in the culture is determined. If the viral growth is inhibited or reduced in the presence of the test compound, the test compound is identified as being effective in inhibiting or reducing the growth or infection of the hEbola virus. In a specific embodiment, the compound that inhibits or reduces the growth of the hEbola in the model animal is tested for its ability to inhibit or reduce the growth rate of other viruses to test its specificity for the hEbola virus.

[0220] According to the method of the invention, a human or an animal is optionally treated for for EboBun or EboIC, other viral infection or bacterial infection by administering an effective amount of an inventive therapeutic composition. Preferably, a vaccine is administered prophylactically. An "effective amount" is an amount that will induce an immune response in a subject. Illustratively, an effective amount of the compositions of this invention ranges from nanogram/kg to milligram/kg amounts for young children and adults. Equivalent dosages for lighter or heavier body weights can readily be determined. The dose should be adjusted to suit the individual to whom the composition is administered and will vary with age, weight and metabolism of the individual. The exact amount of the composition required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the particular peptide or polypeptide used, its mode of administration and the like. An appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. One skilled in the art will realize that dosages are best optimized by the practicing physician or veterinarian and methods for determining dose amounts and regimens and preparing dosage forms are described, for example, in Remington's Pharmaceutical Sciences, (Martin, E. W., ed., latest edition), Mack Publishing Co., Easton, Pa. Preferably, a single administration is operable to induce an immune response.

[0221] Methods involving conventional biological techniques are described herein. Such techniques are generally known in the art and are described in detail in methodology treatises such as Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates). Immunological methods (e.g., preparation of antigen-specific antibodies, immunoprecipitation, and immunoblotting) are described, e.g., in Current Protocols in Immunology, ed. Coligan et al., John Wiley & Sons, New York, 1991; and Methods of Immunological Analysis, ed. Masseyeff et al., John Wiley & Sons, New York, 1992.

[0222] Embodiments of inventive compositions and methods are illustrated in the following detailed examples. These examples are provided for illustrative purposes and are not considered limitations on the scope of inventive compositions and methods.

EXAMPLES

Example 1

Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Bundibugyo, Uganda

[0223] In late November 2007 HF cases were reported in the townships of Bundibugyo and Kikyo in Bundibugyo Dis-

trict, Western Uganda (FIG. 1A). These samples were assayed as described by Towner, JS, et al., PLoS Pathog, 2008 November; 4(11): e1000212, the contents of which are incorporated herein by reference for methods, results, reagents, and all other aspects of the publication. A total of 29 blood samples were initially collected from suspect cases and showed evidence of acute ebolavirus infection in eight specimens using a broadly reactive ebolavirus antigen capture assay known to cross-react with the different ebolavirus species' and an IgM capture assay based on Zaire ebolavirus reagents (Table 1). These specimens were negative when initially tested with highly sensitive real-time RT-PCR assays specific for all known Zaire and Sudan ebolaviruses and marburgviruses. However, further evidence of acute ebolavirus infection was obtained using a traditionally less sensitive (relative to the real-time RT-PCR assays) but more broadly reactive filovirus L gene-specific RT-PCR assay (1 specimen) (Table 1). Sequence analysis of the PCR fragment (400 bp of the virus L gene) revealed the reason for the initial failure of the real-time RT-PCR assays, as the sequence was distinct from that of the 4 known species of ebolavirus, although distantly related to Côte d'Ivoire ebolavirus. In total, 9 of 29 specimens showed evidence of ebolavirus infection, and all tests were negative for marburgvirus (data not shown).

[0224] Approximately 70% of the virus genome was rapidly sequenced from total RNA extracted from a patient serum (#200706291) using a newly established metagenomics pyrosequencing method (454 Life Sciences) which involves successive rounds of random DNA amplification⁸. Using the newly derived draft sequence, a real-time RT-PCR assay specific for the NP gene of this virus was quickly developed and evaluated. The assay was shown to have excellent sensitivity (Table 1), finding positive all the initial six samples that tested positive by either virus antigen capture (five specimens) or virus isolation assays (four specimens). The antigen-capture, IgM, IgG and newly designed real-time PCR assays were quickly transferred to the Uganda Virus Research Institute during the course of the outbreak to facilitate rapid identification and isolation of Ebola cases in the affected area for efficient control of the outbreak. The outbreak continued through late December 2007, and resulted in 149 suspected cases and 37 deaths9.

[0225] Table 1. Ebolavirus diagnostic results of initial 29 specimens obtained from Bundibugyo District with numerical specimen numbers assigned. RT-PCR refers to results obtained from conventional PCR using the broadly reactive Filo A/B primers¹³. Ag, IgM, and IgG refer to results from ELISA-based assays^{10, 11} with Zaire ebolavirus reagents while virus isolation refers to culture attempts on Vero E6 cells²². Q-RT-PCR refers to results obtained using the optimized Bundibugyo ebolavirus specific real-time RT-PCR assay with cycle threshold (Ct) values of positive (Pos) samples indicated in the far right column. * Specimen #200706291 is the clinical sample from which prototype isolate #811250 was obtained.

TABLE 1

Sample No.	RT- PCR	Ag	IgM	IgG	Virus Isolation	Q- RT- PCR	Ct
200706288 200706289 200706290 200706291*	neg neg Pos	neg neg Pos	neg neg neg	neg neg neg	neg neg Pos	neg neg Pos	40 40 40 23.64

TABLE 1-continued

Sample No.	RT- PCR	Ag	IgM	IgG	Virus Isolation	Q- RT- PCR	Ct
200706292	neg	neg	neg	neg	neg	neg	40
200706293	neg	neg	neg	neg	neg	neg	40
200706294	neg	neg	neg	neg	neg	neg	40
200706295	neg	neg	neg	neg	neg	neg	40
200706296	neg	neg	Pos	Pos	neg	neg	40
200706297	neg	neg	Pos	Pos	neg	neg	40
200706298	neg	Pos	Pos	Pos	neg	Pos	34.83
200706299	neg	neg	Pos	Pos	neg	neg	40
200706300	neg	neg	neg	neg	neg	neg	40
200706301	neg	neg	neg	neg	neg	neg	40
200706302	neg	Pos	Pos	neg	neg	Pos	35.01
200706303	neg	neg	neg	neg	neg	neg	40
200706304	neg	neg	neg	neg	Pos	Pos	38.18
200706305	neg	neg	neg	neg	neg	neg	40
200706306	neg	neg	neg	neg	neg	neg	40
200706307	neg	neg	neg	neg	neg	neg	40
200706320	ND	Pos	neg	neg	Pos	Pos	30.24
200706321	ND	neg	neg	neg	neg	neg	40
200706322	ND	neg	neg	neg	neg	neg	40
200706323	ND	neg	neg	neg	neg	neg	40
200706324	ND	neg	neg	neg	neg	neg	40
200706325	ND	neg	neg	neg	neg	neg	40
200706326	ND	neg	neg	neg	neg	neg	40
200706327	ND	Pos	neg	neg	Pos	Pos	34.41
200706328	ND	neg	neg	neg	neg	neg	40

[0226] The entire genome sequence of this virus was completed using a classic primer walking sequencing approach on RNA. The complete genome of the Eb ebolavirus was not available, so it too was derived by a similar combination of random primed pyrosequencing and primer walking approaches. Acquisition of these sequences allowed for the first time the phylogenetic analysis of the complete genomes of representatives of all known species of Ebola and Marburg viruses. The analysis revealed that the newly discovered virus differed from the four existing ebolavirus species (FIG. 1), with approximately 32% nucleotide difference from even the closest relative, EboIC (Table 2). Similar complete genome divergence (35-45%) is seen between the previously characterized ebolavirus species.

[0227] Table 2. Identity matrix based on comparisons of full-length genome sequences of Zaire ebolaviruses 1976 (Genbank accession number NC_002549) and 1995 (Genbank accession number AY354458), Sudan ebolavirus 2000 (Genbank accession number NC_006432), Cote d'Ivoire ebolavirus 1994 (SEQ ID NO: 10), Reston ebolavirus 1989 (Genbank accession number NC_004161), and Bundibugyo ebolavirus 2007 (SEQ ID NO: 1).

TABLE 2

	Zaire '95	Sudan '00	EboIC '94	EboBun '07	Reston '89
Zaire '76	.988	.577	.630	.632	.581
Zaire '95		.577	.631	.633	.581
Sudan '00			.577	.577	.609
EboIC '94				.683	.575
EboBun '07				.5	76

[0228] The material and information obtained from the discovery of the new unique virus EboBun and the realization that together with EboIC these viruses represent a Glade of Bundibungyo-Ivory Coast Ebola virus species is valuable,

and makes possible the development of clinical, diagnostic and research tools directed to human hEbola infection.

Material and Methods

[0229] Ebolavirus Detection and Virus Isolation.

[0230] Several diagnostic techniques were used for each sample: (i) antigen capture, IgG, and IgM assays were performed as previously described¹¹ (ii) virus isolation attempts were performed on Vero E6 cells² and monitored for 14 days; (iii) RNA was extracted and tested for Zaire¹⁶ and Sudan ebolavirus and marburgvirus⁴ using real-time quantitative RT-PCR assays designed to detect all known species of each respective virus species the primers/probe for the Sudan ebolavirus assay were EboSudBMG 1(+) 5'-GCC ATG GIT TCA GGT TTG AG-3' (SEQ ID NO: 21), EboSudBMG 1(-) 5'-GGT IAC ATT GGG CAA CAA TTC A-3' (SEQ ID NO: 22) and Ebola Sudan BMG Probe 5'FAM-AC GGT GCA CAT TCT CCT TTT CTC GGA-BHQ1 (SEQ ID NO: 23)]; (iv) the conventional RT-PCR was performed with the filo À/B primer set as previously described¹⁶ using Superscript III (Invitrogen) according to the manufacturer's instructions. The specimen 200706291 was selected as the reference sample for further sequence analysis.

[0231] Genome Sequencing.

[0232] Pyrosequencing was carried out utilizing the approach developed by 454 Life Sciences, and the method described by Cox-Foster et al.8 Subsequent virus whole genome primer walking was performed as previously described¹⁷ but using the primers specific for Bundibugyo ebolavirus RT-PCR amplification. In total, the entire virus genome was amplified in six overlapping RT-PCR fragments (all primers listed 5' to 3'): fragment A (predicted size 2.7 kb) was amplified using forward-GTGAGACAAAGAATCAT-TCCTG (SEQ ID NO: 24) with reverse-CATCAATTGCT-CAGAGATCCACC (SEQ ID NO: 25); fragment B (predicted size 3.0 kb) was amplified using forward-CCAACAACACTGCATGTAAGT (SEQ ID NO: 26) with reverse-AGGTCGCGTTAATCTTCATC (SEQ ID NO: 27); fragment C (predicted size 3.5 kb) was amplified using forward-GATGGTTGAGTTACTTTCCGG (SEQ ID NO: 28) with reverse-GTCTTGAGTCATCAATGCCC (SEQ ID NO: 29); fragment D (predicted size 3.1 kb) was amplified using forward-CCACCAGCACCAAAGGAC (SEQ ID NO: 30) with reverse-CTATCGGCAATGTAACTATTGG (SEQ ID NO: 31); fragment E (predicted size 3.4 kb) was amplified using forward-GCCGTTGTAGAGGACACAC (SEQ ID NO: 32) with reverse-CACATTAAATTGTTCTAACATG-CAAG (SEQ ID NO: 33) and fragment F (predicted size 3.5 kb) was amplified using forward-CCTAGGTTATTTA-GAAGGGACTA (SEQ ID NO: 34) with reverse-GGT AGA TGT ATT GAC AGC AAT ATC (SEQ ID NO: 35).

[0233] The exact 5' and 3' ends of Bundibugyo ebolavirus were determined by 3' RACE from virus RNA extracted from virus infected Vero E6 cell monolayers using TriPure isolation reagent. RNAs were then polyadenylated in vitro using A-Plus poly(A) polymerase tailing kit (Epicenter Biotechnologies) following the manufacturer's instructions and then purified using an RNeasy kit (Qiagen) following standard protocols. Ten microliters of in vitro polyadenylated RNA were added as template in RT-PCR reactions, using Super-Script III One-Step RT-PCR system with Platinum Taq High Fidelity (Invitrogen) following the manufacturer's protocol. Two parallel R1-PCR reactions using the oligo(dT)-containing 3'RACE-AP primer (Invitrogen) mixed with 1 of 2 viral

specific primers, Ebo-U 692(–) ACAAAAAGCTATCTG-CACTAT (SEQ ID NO: 36) and Ebo-V18269(+) CTCA-GAAGCAAAATTAATGG (SEQ ID NO: 37), generated ~700 nt long fragments containing the 3' ends of either genomic and antigenomic RNAs. The resulting RT-PCR products were analyzed by agarose electrophoresis, and DNA bands of the correct sizes were purified using QIAquick Gel Extraction Kit (Qiagen) and sequenced using standard protocols (ABI).

[0234] The nucleotide sequence of the Côte d'Ivoire ebolavirus (EboIC) isolate RNA was initially determined using the exact same pyrosequencing strategy as that used for Bundibugyo ebolavirus described above. This method generated sequence for approximately 70% of the entire genome. This draft sequence was then used to design a whole genome primer walking strategy for filling any gaps and confirming the initial sequence. The following Côte d'Ivoire ebolavirusspecific primers were used to generate RT-PCR fragments, designated A-F, as follows: Fragment A (predicted size 3.0 kb) was amplified using forward-GTGTGCGAATAACTAT-GAGGAAG (SEQ ID NO: 38) and reverse-GTCTGTG-CAATGTTGATGAAGG (SEQ ID NO: 39); Fragment B (predicted size 3.2 kb) was amplified using forward-CAT-GAAAACCACACTCAACAAC (SEQ ID NO: 40) and reverse-GTTGCCTTAATCTTCATCAAGTTC (SEQ ID NO: 41); Fragment C (predicted size 3.0 kb) was amplified using forward-GGCTATAATGAATTTCCTCCAG (SEQ ID NO: 42) and reverse-CAAGTGTATTTGTGGTCCTAGC (SEQ ID NO: 43); fragment D (predicted size 3.5 kb) was amplified using forward-GCTGGAATAGGAATCACAGG (SEQ ID NO: 44) and reverse-CGGTAGTCTACAGTTCTT-TAG (SEQ ID NO: 45); fragment E (predicted size 4.0 kb) was amplified using forward-GACAAAGAGATTAGATT-AGCTATAG (SEQ ID NO: 46) and reverse-GTAAT-GAGAAGGTGTCATTTGG (SEQ ID NO: 47); fragment F (predicted size 2.9 kb) was amplified using forward-CAC-GACTTAGTTGGACAATTGG (SEQ ID NO: 48) and reverse-CAGACACTAATTAGATCTGGAAG (SEQ ID NO: 49): fragment G (predicted size 1.3 kb) was amplified using forward-CGGACACACAAAAAGAAWRAA (SEQ ID NO: 50) and reverse-CGTTCTTGACCTTAGCAGTTC (SEQ ID NO: 51); and fragment H (predicted size 2.5 kb) was amplified using forward-GCACTATAAGCTCGATGAAGTC (SEQ ID NO: 52) and reverse-TGGACACACAAAAARGA-RAA (SEQ ID NO: 53). A gap in the sequence contig was located between fragments C and D and this was resolved using the following primers to generate a predicted fragment of 1.5 kb: forward-CTGAGAGGATCCAGAAGAAAG (SEQ ID NO: 54) and reverse-GTGTAAGCGTTGATATAC-CTCC (SEQ ID NO: 55). The terminal ~20 nucleotides of the sequence were not experimentally determined but were inferred by comparing with the other known Ebola genome sequences.

[0235] Bundibugyo ebolavirus Real-Time RT-PCR Assay. **[0236]** The primers and probe used in the Bundibugyo ebolavirus specific Q-RT-PCR assay were as follows: EboU965 (+): 5'-GAGAAAAGGCCTGTCTGGAGAA-3' (SEQ ID NO: 56), EboU1039(-): 5'-TCGGGTATTGAATCAGACCT-TGTT-3' (SEQ ID NO: 57) and EboU989 Prb: 5'Fam-TTCAACGACAAATCCAAGTGCACGCA-3'BHQ1 (SEQ ID NO 58). Q-RT-PCR reactions were set up using Superscript III One-Step Q-RT-PCR (Invitrogen) according to the manufacturer's instructions and run for 40 cycles with a 58° C. annealing temperature.

[0237] Phylogenetic Analysis.

[0238] Modeltest 3.7^{18} was used to examine 56 models of nucleotide substitution to determine the model most appropriate for the data. The General Time Reversible model incorporating invariant sites and a gamma distribution (GTR+I+G) was selected using the Akaike Information Criterion (AIC). Nucleotide frequencies were A=0.3278, C=0.2101, G=0. 1832, T=0.2789, the proportion of invariant sites=0.1412, and the gamma shape parameter=1.0593. A maximum like-lihood analysis was subsequently performed in PAUP*4. 0b10¹⁹ using the GTR+I+G model parameters. Bootstrap support values were used to assess topological support and were calculated based on 1,000 pseudoreplicates²⁰.

[0239] In addition, a Bayesian phylogenetic analysis was conducted in MrBayes 3.2^{21} using the GTR+I+G model of nucleotide substitution. Two simultaneous analyses, each with four Markov chains, were run for 5,000,000 generations sampling every 100 generations. Prior to termination of the run, the AWTY module was used to assess Markov Chain Monte Carlo convergence to ensure that the length of the analysis was sufficient²². Trees generated before the stabilization of the likelihood scores were discarded (burn in =40), and the remaining trees were used to construct a consensus tree. Nodal support was assessed by posterior probability values (>95=statistical support).

Example 2

Immunization against EboBun

[0240] To determine the capability of immunogens to elict an immune response in non-human primates (NHP), 12 cynomolgus macaques, of which 10 are immunized with VSV ΔG / EboBunGP either orally (OR; n=4), intranasally (IN; n=4) or intramuscularly (IM; n=2) in accordance with all animal control and safety guidelines and essentially as described by Qiu, X, et al., PLoS ONE. 2009; 4(5): e5547. The remaining 2 control animals are vaccinated intramuscularly with VSV ΔG / MARVGP. VSV ΔG /MARVGP does not provide heterologous protection against EboBun, therefore these NHPs succumb to EboBun infection. Animals are fed and monitored twice daily (pre- and post-infection) and fed commercial monkey chow, treats and fruit. Husbandry enrichment consists of commercial toys and visual stimulation.

[0241] The recombinant VSVAG/EboBun vaccines are synthesized expressing the EboBun glycoprotein (GP) (SEQ ID NO: 9), soluble glycoprotein (sGP) (SEQ ID NO: 4), or nucleoprotein (NP) (SEQ ID NO: 3). Control VSVAG/MAR-VGP vaccines represent the analogous proteins from Lake victoria marburgvirus (MARV) (strain Musoke). The following results for GP are similar for sGP and NP. Vaccines are generated using VSV (Indiana serotype) as described previously. Garbutt, M, et al., J Virol, 2004; 78(10):5458-5465; Schnell, M J, et al., PNAS USA, 1996; 93(21):11359-11365. EboBun challenge virus is passaged in Vero E6 cells prior to challenge, as described previously Jones, S M, et al., Nat Med. 2005; 11(7):786-790; Jahrling, P B, et al., J Infect Dis, 1999; 179 (Suppl 1):S224-34. An EboBun immunogen peptide pool consisting of 15mers with 11 amino acid overlaps (Sigma-Genosys) spanning the entire sequence of the EboBun immunogens and strain Mayinga 1976 GP are used. [0242] Twelve filovirus naïve cynomolgus monkeys randomized into four groups receive 2 ml of 1×10^7 PFU/ml of vaccine in Dulbecco's modified Eagle's medium (DMEM).

Animals in the three experimental groups are vaccinated with either: 1) 2 ml orally (OR) (n=4); 2) 1 ml dripped into each nostril, intranasally (IN) (n=4); or 3) 1 ml each into two sites intramuscularly (IM) (n=2). The two controls are injected intramuscularly with 2 ml of 1×10^7 PFU/ml of VSV ΔG /MARVGP. All animals are challenged intramuscularly 28 days later with 1,000 PFU of EboBun.

[0243] Routine examination is conducted on 0, 2, 4, 6, 10, 14 and 21 days post-vaccination, then 0, 3, 6, 10, 14, 19, 26 days, 6 and 9 months after the EboBun challenge. For the examinations animals are anaesthetized by intramuscular injection with 10 mg/kg of ketaset (Ayerst). Examinations include haematological analysis, monitoring temperature (rectal), respiration rate, lymph nodes, weight, hydration, discharges and mucous membranes. Also, swabs (throat, oral, nasal, rectal, vaginal) and blood samples are collected (4 ml from femoral vein, 1 ml in EDTA vacutainer tube). Cynomolgus monkey PBMCs are isolated using BD CPT sodium citrate Vacutainers (Becton Dickinson) as per manufacturer's protocol.

[0244] All VSV Δ G/EboBunGP immunized animals are protected from high dose challenge. These animals show no evidence of clinical illness after vaccination or EboBun challenge. Both control animals demonstrate typical symptoms associated with EboBun HF including fever, macular rashes, lethargy, and unresponsiveness. Continued infection requires euthanization. Hematology analyses at each examination date demonstrate increases in the platelet-crit in the OR and IN groups post-challenge, however, no significant changes are observed in any NHPs post-immunization or in the VSV Δ G/EboBunGP immunized NHPs post-challenge.

[0245] EboBun antibody production from humoral antibody response to vaccination and challenge is examined by a virus like particle (VLP) based ELISA assay. Generation of EboBun VLPs is performed by the protocol for ZEBOV as described by Wahl-Jensen, V., et al., *J Virol*, 2005; 79(4): 2413-2419. ELISA is performed by the protocol described by Qiu, X, et al., PLoS ONE. 2009; 4(5): e5547.

[0246] The VSV Δ G/MARVGP immunized animals do not develop a detectable antibody response to EboBun. In contrast, potent antibody responses are detected in all VSV Δ G/EboBunGP immunized animals independent of immunization route. Between days 14 and 21 post-vaccination, all VSV Δ G/EboBunGP immunized NHPs develop high levels of IgA, IgM, and IgG against EboBunGP. After challenge the IgM titres do not exceed the post-vaccination levels, however, IgG and IgA antibody titres are increased peaking 14 days post-challenge then slowly decreasing before maintaining a relatively high antibody titre up to 9 months.

[0247] The level of neutralization antibodies is detected by a EboBun-GFP flow cytometric neutralization assay in serum collected at days 0 and 21 post-vaccination. Samples are assayed in duplicate for their ability to neutralize an infection with EboBun-GFP in VeroE6 cells. Serially diluted serum samples are incubated with an equal volume of EboBun-GFP in DMEM, at 37° C., 5% CO₂ for 1 hr followed by addition of 150 µl per well of a confluent 12 well plate of VeroE6 cells (MOI=0.0005). After 2 hours at 37° C., 5% CO₂, 1 ml of DMEM, 2% fetal bovine serym (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin is added per well and incubated for 5 days. Cells are harvested by removing the culture supernatant, washing with 1 ml PBS, 0.04% EDTA, then adding 800 µl of PBS 0.04% EDTA for 5 minutes at 37° C. before adding 8 ml PBS, 4% paraformaldehyde (PFA) and overnight incu-

[0248] The OR and IN routes produce EboBunGP-specific neutralizing antibodies with the OR route producing the highest titres post-vaccination. The IM immunization produces detectable levels of neutralizing antibody. In comparison, 3/4 NHPs in the OR group demonstrate a 50% reduction in EboBun-GFP positive cells at a titre of 1:40. Similarly, the IN route results in a reduction of EboBun-GFP positive cells at the 1:40 dilution.

[0249] EboBunGP-specific effector cellular immune responses are determined using IL-2 and IFN-y ELISPOT assays as described by Qin, X, et al., PLoS ONE. 2009; 4(5): e5547 to determine the number of IL-2 and IFN-y secreting lymphocytes. Prior to challenge on days 10 to 14 post-vaccination there is a detectable EboBun immunogen-specific IFN-y response in all immunized animals. The IM route is the most potent, inducing approximately 2-fold more IFN-y secreting cells than OR (p<0.001) or IN (p=0.043) routes. A strong post-challenge secondary IFN-y response is induced in all VSVAG/EboBun immunized animals with the IM route producing the most IFN-y cells at day 6. By day 10 the OR group demonstrates a stronger response. The IFN-y in the IN group rises steadily, peaking at day 26 post-challenge with 4.3 and 2 fold more EboBun specific IFN-y secreting cells than the IM (p=0.003) and OR (p=0.075) group, respectively. All three routes produce strong EboBun-specific IFN-y responses.

[0250] Post-vaccination, the IM group also has more EboBunGP-specific IL-2 secreting cells than either of the mucosally immunized groups. Post-challenge, the IM route continues to dominate early after challenge peaking on day 10. This difference shows a trend when compared to the IN group (p=0.067) and is significant when compared to the OR group (p<0.001). Additionally, the IN group has more IL-2 producing cells than the OR group (p=0.090) on day 10 post-challenge. By day 26 post-challenge all three routes continue to produce a EboBunGP-specific IL-2 response, however, the IN group response is strongest. At day 26 postchallenge the IN group has the most potent IFN- γ and IL-2 responses, as well as the highest IgA and IgG antibody titre, indicating this immunization route, followed by a EboBun challenge, results in the development of potent and sustained effector responses.

[0251] Absolute lymphocyte numbers for CD3⁺, CD4⁺, and CD8⁺ (CD3⁺4⁻) T cell populations are determined by flow cytometry. No decrease is observed in the lymphocyte populations for any of the VSV Δ G/EboBunGP vaccinated NHPs. In contrast, control animals who are not protected from EboBun show lymphocyte numbers decreased by 28-57%.

[0252] Macrophage numbers are slightly increased in control animals. However, the number of CD14⁺ cells is greater in the VSV Δ G/EboBunGP vaccinated groups with the IM route showing the most significant increases.

[0253] In order to determine the long term immune response after challenge, EboBunGP-specific CD4⁺ and CD8⁺ memory T-lymphocytes are examined for their ability to proliferate (CFSE⁻) or produce IFN- γ in response to EboBunGP peptides at 6 months post-vaccination. EboBunGP-specific memory responses are observed as a result of vaccination followed by a ZEBOV challenge. These responses persist for at least 6 months. The memory popula-

tions in OR and IN inoculation routes demonstrate the greatest potential for proliferation and IFN- γ production postchallenge.

[0254] Any patents or publications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication is specifically and individually indicated to be incorporated by reference.

[0255] The compositions and methods described herein are presently representative of preferred embodiments, exemplary, and not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art. Such changes and other uses can be made without departing from the scope of the invention as set forth in the claims. All numerical ranges are inclusive of the whole integers and decimals between the endpoints, and inclusive of the endpoints.

REFERENCES

- **[0256]** 1. Suzuki, Y., and Gojobori, T., (1997) The origin and evolution of Ebola and Marburg viruses. Mol Bio Evol, 14(8): 800-806.
- [0257] 2. Sanchez, A., Geisbert, T. W., Feldmann, H. in Fields Virology (ed. Knipe, D. M., Howley, P. M.) 1409-1448 (Lippincott Williams and Wilkins, Philadelphia, 2007).
- [0258] 3. Leroy, E. M. et al., (2005) Fruit bats as reservoirs of Ebola virus. Nature, 438, 575-6.
- [0259] 4. Towner, J. S. et al., (2007) Marburg virus infection detected in a common African bat. PLoS ONE, 2(8), e764.
- [0260] 5. Swanepoel, R. et al., (2007) Studies of reservoir hosts for Marburg virus. Emerg Infect Dis, 13(12), 1847-51.
- **[0261]** 6. Le Guenno, B. et al., (1995) Isolation and partial characterization of a new species of Ebola virus. Lancet, 345(8960), 1271-4.
- **[0262]** 7. Ksiazek, T. G. et al. (1999) Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, IgG and IgM antibody findings among EHF patients in Kikwit, 1995. J. Infect Dis 179 (suppl 1), S177-S187.
- [0263] 8. Cox-Foster, D. L. et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283-7.
- [0264] 9. World Health Organization (2008) Ebola outbreak contained in Uganda. Features, 22 February, www. who.int/features/2008/ebola_outbreak/en/.
- [0265] 10. Sullivan, N. J., Sanchez, A., Rollin, P. E., Yang, Z.-Y. & Nabel, G. J. (2000) Development of a preventive vaccine for Ebola virus infection in primates. Nature 408, 605-609.
- [0266] 11. Ksiazek, T. G., West, C. P., Rollin, P. E., Jahrling, P. B. & Peters, C. J. (1999) ELISA for the detection of antibodies to Ebola viruses. J. Infect Dis 179 (suppl 1), S191-S198.
- **[0267]** 12. Rodriguez, L. et al. (1999) Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Zaire 1995. J. Infect Dis 179 (suppl 1), S170-S176.
- [0268] 13. Sanchez, A. et al. Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates. J. Infect Dis 179 (suppl 1), S164-S169 (1999).
- **[0269]** 14. Jones, S. M. et al. (2005) Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 11, 786-90.

Oct. 4, 2012

- **[0270]** 15. Geisbert, T. W. et al. (2008) Recombinant vesicular stomatitis virus vector mediates postexposure protection against Sudan Ebola hemorrhagic fever in non-human primates. J Virol 82, 5664-8.
- [0271] 16. Towner, J. S., Sealy, T. K., Ksiazek, T. & Nichol, S. T. (2007) High-throughput molecular detection of hemorrhagic fever virus threats with applications for outbreak settings. J. Inf Dis 196 (suppl 2), S205-212.
- **[0272]** 17. Towner, J. S. et al. (2006) Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 80, 6497-516.
- [0273] 18. Posada, D. & Crandall, K. A. (1998) MODELT-EST: testing the model of DNA substitution. Bioinformatics 14. 817-818.
- [0274] 19. Swofford, D. L. (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods) version 4.0b10. Sinauer Assoc., Sunderland, Mass.
- [0275] 20. Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
- [0276] 21. Ronquist, F. & Huelsenbeck, J. P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.
- [0277] 22. Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581-583.

60

120

180

240

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 59

<210> SEQ ID NO 1 <211> LENGTH: 18940 <212> TYPE: DNA <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Full viral sequence <400> SEQUENCE: 1 cggacacaca aaaagaatga aggattttga atctttattg tgtgcgagta actacgagga agattaaaga ttttcctctc attgaaattg aaattgagat tctaatctcg acggatcgat ccccaatacc aacactgaga attggcctga agaagtcatc tgctccttgg caaaaccaag agcaggccca aagggccatt aggccacatc tgctgagcct gcagaacacg caggacttac ttagcagaag agagcgcgtg ccgaaaccag ccaacaaatt gacacagctg ctcactctga ccctgaattc ataaacaata ttaagttgac aacagagata ctaatccaat atttggatca agaatcaaaa tagtgaaacg actgactatc cctccttaga attagcaaag atccttttgt

ttagcagaag agagcgcgtg ccgaaaccag ccaacaaatt gacacagctg ctcactctga 300 ccctgaattc ataaacaata ttaagttgac aacagagata ctaatccaat atttggatca 360 agaatcaaaa tagtgaaacg actgactatc cctccttaga attagcaaag atccttttgt 420 agactattgt gctacattct ctatccaaga cctcaaaatg gatcctcgtc caatcagaac 480 ctggatgatg cataacacat ctgaagttga agcagactac cataagattc taactgccgg 540 attgtccgtc cagcaaggca ttgtgagaca aagaatcatt cctgtttacc aaatctcaaa 600 cctqqaqqaa qtatgtcaac tcatcataca qgcattcqaq gctqqcqtcq acttccaqqa 660 tagtgcagat agetttttgt taatgetatg tetgcateat geetateaag gggattataa 720 acaatttttg gaaagtaatg cggtaaaata ccttgaaggt catggattcc gttttgagat 780 qaaqaaaaaq qaaqqtqtca aqcqcctqqa qqaactactc cctqctqcct cqaqtqqaaa 840 gaacatcaag agaacattgg ctgcaatgcc cgaggaggaa acaacagaag caaatgctgg 900 acaatttett teatttgeta gtetgtttet eccaaaattg gttgteggag aaaaggeetg 960 tctggagaag gttcaacgac aaatccaagt gcacgcagaa caaggtctga ttcaataccc 1020 gacatettgg caateggtgg gacatatgat ggteatette agaetaatge gaaceaaett 1080 cctgattaag ttcctcctaa tacatcaagg aatgcatatg gttgcagggc atgatgctaa 1140 tgatgccgtc attgccaact ctgtagctca agctcgtttc tccggattgt tgatagtcaa 1200 aacagtgctt gatcatatcc tccaaaaaac agagcacgga gttcgcctgc atcccttggc 1260 gcgaacagcc aaagtcaaaa atgaggtgag ctcttttaag gccgctttag cctcactagc 1320

acaacatgga	gaatatgccc	cgtttgctcg	tctgctgaat	ctatctgggg	ttaataatct	1380
tgagcatggg	cttttccctc	aactttctgc	aattgctttg	ggagtagcaa	ctgcacatgg	1440
gagcactctg	gctggagtca	atgtaggaga	gcaataccaa	caactgcgag	aagcagccac	1500
tgaggccgaa	aagcagttgc	agaaatatgc	tgaatctcgt	gaacttgatc	acctaggtct	1560
tgatgatcag	gaaaagaaaa	tcctaaaaga	cttccatcag	aaaaagaatg	agatcagctt	1620
ccagcagacg	acagccatgg	tcacactgcg	gaaagagaga	ttggccaaat	tgaccgaagc	1680
tattacttcc	acctctatcc	tcaaaacagg	aaggcggtat	gatgatgaca	atgacatacc	1740
ctttccaggg	ccaatcaatg	ataacgagaa	ctctggtcag	aacgatgacg	atccaacaga	1800
ctcccaggat	accacaatcc	cggatgtaat	aatcgatcca	aacgatggtg	ggtataataa	1860
ttacagcgat	tatgcaaatg	atgctgcaag	tgctcctgat	gacctagttc	tttttgacct	1920
tgaggacgag	gatgatgctg	ataacccggc	tcaaaacacg	ccagaaaaaa	atgatagacc	1980
agcaacaaca	aagctgagaa	atggacagga	ccaggatgga	aaccaaggcg	aaactgcatc	2040
cccacgggta	gcccccaacc	aatacagaga	caagccaatg	ccacaagtac	aggacagatc	2100
cgaaaatcat	gaccaaaccc	ttcaaacaca	gtccagggtt	ttgactccta	tcagcgagga	2160
agcagacccc	agcgaccaca	acgatggtga	caatgaaagc	attcctcccc	tggaatcaga	2220
cgacgagggt	agcactgata	ctactgcagc	agaaacaaag	cctgccactg	cacctcccgc	2280
tcccgtctac	cgaagtatct	ccgtagatga	ttctgtcccc	tcagagaaca	ttcccgcaca	2340
gtccaatcaa	acgaacaatg	aggacaatgt	caggaacaat	gctcagtcgg	agcaatccat	2400
tgcagaaatg	tatcaacata	tcttgaaaac	acaaggacct	tttgatgcca	tcctttacta	2460
ccatatgatg	aaagaagagc	ccatcatttt	cagcactagt	gatgggaagg	agtatacata	2520
tccagactct	cttgaagatg	agtatccacc	ctggctcagc	gagaaggaag	ccatgaacga	2580
agacaataga	ttcataacca	tggatggtca	gcagttttac	tggcctgtga	tgaatcatag	2640
aaataaattc	atggcaatcc	tccagcatca	caggtgatcc	gacctctaaa	actgagetee	2700
taactacaag	ctaccccatc	actctgccgg	aatgccagaa	cctccctcca	aaacagctcc	2760
acatcgagaa	cctccgacgc	ggtacacagg	caagacaggc	aacctaatga	tgttcctgtt	2820
cacccacaac	cgcaaccaac	acttgatcga	cttccaagac	aactacaacc	cccttagcca	2880
actccaccac	agaagcacca	ccccataaca	acaaccccaa	accaacaaca	ctgcatgtaa	2940
gtattgtctc	accccaagat	gatccctgga	caccaacaac	cccctaacct	ccccaagttg	3000
tcattaagaa	aaaatatatg	atgaagatta	aaaccttcat	cagagctatt	tcttctacgc	3060
ttggttagga	ccagtattca	caaactattt	tacaatccct	acccaatatg	acctctaaca	3120
gagcaagggt	gacttacaac	ccaccaccaa	caaccacagg	cacacgatcg	tgtgggccgg	3180
aactttccgg	gtggatctct	gagcaattga	tgacaggcaa	gattccgatt	accgatatct	3240
tcaatgaaat	tgaaacctta	cctagtataa	gtccctcgat	ccactccaaa	atcaaaaccc	3300
caagtgttca	aacacgcagt	gtccagaccc	aaactgaccc	aaattgtaat	catgattttg	3360
cagaggttgt	gaaaatgcta	acatctctaa	cccttgtcgt	acaaaaacaa	acccttgcaa	3420
ctgaatcact	tgagcaacgc	attactgacc	tggaaggtag	cctgaaacca	gtgtctgaga	3480
tcaccaagat	tgtttctgca	ctaaatagat	cctgtgcaga	gatggtggcc	aaatatgatc	3540
ttctagtaat	gacgactggt	cgtgcaactg	ccactgctgc	agctactgaa	gcatactggg	3600

cagaacatgg	acgtcctcca	ccggggccct	cattgtacga	ggaggatgca	atcaggacta	3660
aaattggaaa	acaagggggat	atggtaccca	aggaagtgca	agaggccttc	cgtaatctgg	3720
atagtactgc	ccttctaacg	gaagagaatt	ttgggaaacc	agacatatcc	gcaaaagact	3780
tgcgcaatat	catgtatgat	cacctcccag	gttttggcac	agcatttcat	caactagtgc	3840
aagttatctg	caagttaggg	aaggacaatt	cctcacttga	tgtaattcat	gcagaatttc	3900
aggccagcct	tgctgaagga	gactctcctc	agtgtgccct	gattcagata	accaaacgga	3960
ttcctatttt	ccaagatgca	gcaccacccg	taatccatat	tcggtcacgc	ggtgatatac	4020
caaaggcgtg	tcaaaagagc	ctccgccctg	ttccaccatc	accaaagatt	gataggggtt	4080
gggtatgcat	attccagcta	caagacggaa	aaacactcgg	actcaaaatc	taaggtgaac	4140
aattgcgcaa	cctccacagt	cgcctatatt	gcttccttcc	ggaatcaggg	tatgatcgcg	4200
taaaaaataa	gcttccaaca	tattgataca	cgatccatat	ccataatgcc	atctccagga	4260
atatgagaac	gcaaggccat	atcaggaccc	gatctcaatt	ccaatgcaac	ctactgttaa	4320
gaataaaata	accaatgtcc	tctagcctta	tatgttctca	aaaatacaag	tgatgaagat	4380
taagaaaaag	catcctttac	ttgagaggag	ctaattcttt	atacttcatc	taatctttaa	4440
gtaagttgat	cactaccacc	atgaggaggg	caattctacc	tactgcaccg	ccagaataca	4500
tagaggctgt	ctacccaatg	agaacggtta	gtactagtat	caacagtact	gccagtggtc	4560
cgaactttcc	agcaccggat	gtaatgatga	gtgatacacc	ctccaactca	ctccgaccaa	4620
ttgctgatga	taacatcgat	catccaagtc	atacaccaac	cagtgtttca	tcagccttta	4680
tactcgaggc	aatggtgaat	gtgatatcgg	ggccgaaggt	actaatgaag	caaattccta	4740
tatggctccc	cttgggtgtt	gctgatcaaa	aaacatatag	ttttgactca	actacagctg	4800
caattatgct	cgcatcgtac	accatcactc	actttggcaa	aacctccaat	ccgcttgtga	4860
gaatcaatcg	acttggtcct	gggatccccg	atcacccgtt	gcggcttcta	agaataggaa	4920
atcaagcctt	cttgcaagag	tttgtgctgc	ctccagttca	attgccgcag	tatttcactt	4980
ttgacctgac	ggctctaaag	ctgatcactc	aacctctccc	ggcagcaacc	tggacggatg	5040
atactccgac	cggtcctaca	ggaatacttc	gtcctggaat	ttcctttcat	cccaaactga	5100
gacctatcct	attgccaggg	aagaccggga	aaagaggatc	cagctccgat	cttacttctc	5160
ctgataaaat	acaagcaata	atgaactttc	tccaagacct	caaactcgtg	ccgattgatc	5220
cagccaagaa	cattatgggt	attgaagtgc	cggaactctt	ggtccacaga	ctaactggaa	5280
agaaaatcac	aacaaaaaat	ggtcaaccaa	taattcctat	tcttctacca	aagtatattg	5340
gcatggatcc	catttctcag	ggagacctca	caatggtcat	cactcaagac	tgtgacactt	5400
gccattctcc	tgctagtctt	cctccagtca	gcgagaaatg	agcatgaagt	ccgaggctgc	5460
ccggcccaca	cgacccccag	ggccttcgtc	cggctaccga	accaaccatc	cgaccttcat	5520
caaaaccaaa	aaataccgcc	acgcgaaagc	taaaatgcag	gaccacaatc	caaccagcaa	5580
caccatccat	acacaggtat	caattgggct	gccgcagcat	atagacccaa	tagcaagctg	5640
ctgtccagaa	aatagttccg	gaaagtaact	caaccatcgc	aagcccaatg	cagctttcag	5700
aaatccgcca	gcaacccaac	tccactgtac	ccccaatatt	aacctgaatc	gactaaccgc	5760
actttaattt	gaagtacatt	tgttcaatgg	gttcattatt	aacagtgttg	cttttagatt	5820
gtacctttgc	tcacagatag	taaattgtta	tggtatcaaa	tcttattaag	aaaaagaaca	5880

cgatgaagat	taacgcgacc	tagagcgctg	ccttcatctc	atcaatttaa	cttgtcaata	5940
gagcaaccta	gtttgtgatt	actcatcttc	cgtagttgac	aaacactttg	ctggttaatt	6000
gtaaatatac	cacagtcatc	atggttacat	caggaattct	acaattgccc	cgtgaacgct	6060
tcagaaaaac	atcattttt	gtttgggtaa	taatcctatt	tcacaaagtt	ttccctatcc	6120
cattgggcgt	agttcacaac	aacactctcc	aggtaagtga	tatagataaa	ttggtgtgcc	6180
gggataaact	ttcctccaca	agtcagctga	aatcggtcgg	gcttaatcta	gaaggtaatg	6240
gagttgccac	agatgtacca	acagcaacga	agagatgggg	atteegaget	ggtgttccac	6300
ccaaagtggt	gaactacgaa	gctggggagt	gggctgaaaa	ctgctacaac	ctggacatca	6360
agaaagcaga	tggtagcgaa	tgcctacctg	aagcccctga	gggtgtaaga	ggetteeete	6420
gctgccgtta	tgtgcacaag	gtttctggaa	cagggccgtg	ccctgaaggt	tacgctttcc	6480
acaaagaagg	cgctttcttc	ctgtatgatc	gactggcatc	aacaatcatc	tatcgaagca	6540
ccacgttttc	agaaggtgtt	gtggetttet	tgatcctccc	cgaaactaaa	aaggactttt	6600
tccaatcgcc	accactacat	gaaccggcca	atatgacaac	agacccatcc	agctactacc	6660
acacagtcac	acttaattat	gtggctgaca	attttgggac	caatatgact	aactttctgt	6720
ttcaagtgga	tcatctaact	tatgtgcaac	ttgaaccaag	attcacacca	caatttcttg	6780
tccaactcaa	tgagaccatt	tatactaatg	ggcgtcgcag	caacaccaca	ggaacactaa	6840
tttggaaagt	aaatcctact	gttgacaccg	gcgtaggtga	atgggccttc	tgggaaaata	6900
aaaaaacttc	acaaaaaccc	tttcaagtga	agagetgtet	gtcatatttg	taccaagagc	6960
ccaggatcca	ggcagcaacc	agaagacgaa	ggtcactccc	accagetteg	ccaacaacca	7020
aacctccaag	aaccacgaag	acttggttcc	agaggatccc	gcttcagtgg	ttcaagtgcg	7080
agacctccag	agggaaaaca	cagtgccgac	cccaccccca	gacacagtcc	ccacaactct	7140
gateccegae	acaatggagg	aacaaaccac	cagccactac	gaaccaccaa	acatttccag	7200
aaaccatcaa	gagaggaaca	acaccgcaca	ccccgaaact	ctcgccaaca	ateccecaga	7260
caacacaacc	ccgtcgacac	cacctcaaga	cggtgagcgg	acaagttccc	acacaacacc	7320
ctccccccgc	ccagtcccaa	ccagcacaat	ccatcccacc	acacgagaga	ctcacattcc	7380
caccacaatg	acaacaagcc	atgacaccga	cagcaatcga	cccaacccaa	ttgacatcag	7440
cgagtctaca	gagccaggac	cactcaccaa	caccacaaga	ggggctgcaa	atctgctgac	7500
aggeteaaga	agaacccgaa	gggaaatcac	cctgagaaca	caagccaaat	gcaacccaaa	7560
cctacactat	tggacaaccc	aagatgaagg	ggctgccatt	ggtttagcct	ggatacetta	7620
cttcgggccc	gcagcagagg	gaatttatac	ggaagggata	atgcacaatc	aaaatgggct	7680
aatttgcggg	ttgaggcagc	tagcaaatga	gacgactcaa	gccctacagt	tattcttgcg	7740
tgctaccacg	gaattgcgca	ctttctctat	attgaatcga	aaagccatcg	actttttact	7800
ccaaagatgg	ggaggaacgt	gccacatctt	aggcccagat	tgctgtattg	agececatga	7860
ttggactaag	aacattactg	acaaaataga	tcaaatcatt	catgatttca	ttgataaacc	7920
tctaccagat	caaacagata	atgacaattg	gtggacaggg	tggaggcaat	gggttcctgc	7980
cgggatcggg	atcacggggg	taataatcgc	agttatagca	ctgctgtgta	tttgcaaatt	8040
tctactctaa	tctagtccga	ctctgtacca	gcataatggc	ctctaaaata	agettttget	8100
tctgcttcct	atagttaata	catttcagca	aaaatcaact	attaagtcaa	aagaagatcc	8160

ctctaataat	cctaattacc	ttcaaaaatc	tagaacttta	ttaattctca	gggtatttag	8220	
aacagccaga	tgacttgact	aagtttgtac	tgtaataaaa	agatacttga	tgaagattaa	8280	
gaaaaagaca	gtcttgtgat	tgtcactaat	cttcatctca	aaacatatta	ttttaccaga	8340	
agctactata	gcctacctcc	ttgacacata	gcaaacctta	ctcatgttga	taattgtttg	8400	
cctgctattt	acatatttac	taacttacaa	aattatcttg	gggatttctc	tgaacatata	8460	
atcagaattg	gcatttaaaa	cacaagttag	tcctaatgga	ctcatttcat	gagagagggc	8520	
gtagcagaac	tattcgacag	agtgcaagag	atgggccgag	tcatcaagta	agaacaagat	8580	
catcctccag	agacagccac	cgcagcgaat	atcatacacc	taggagctct	tcccaagttc	8640	
gagtcccgac	tgtgtttcat	cggaagcgta	ctgattcttt	gacagttcca	ccagcaccaa	8700	
aggacatatg	tcctacctta	aggaaaggat	ttttgtgtga	cagcaatttt	tgtaaaaagg	8760	
accatcaact	agaaagttta	acagataggg	agctgctttt	gctgattgca	cggaaaacct	8820	
gcggctccct	tgaacaacaa	ttgaacatca	ctgctcctaa	agatacacga	ttagcaaatc	8880	
caattgcaga	tgatttccaa	caaaaagacg	gcccaaaaat	tacactattg	acacttttgg	8940	
agactgcgga	gtattggtca	aaacaagata	tcaagggcat	tgatgactca	agactaagag	9000	
cattactaac	cctttgtgcc	gtcatgacga	ggaaattctc	aaaatcccag	cttagtctat	9060	
tgtgtgagag	tcatctacga	cgagaagggc	taggacagga	tcaatcagaa	tctgttcttg	9120	
aagtgtatca	gcgcttacat	agcgacaaag	gcggaaattt	tgaggcagcc	ctatggcaac	9180	
aatgggaccg	acagtccttg	atcatgttta	taacagcatt	tcttaatatt	gctttacaat	9240	
taccctgtga	aagttcatct	gttgttattt	caggattaag	gctgctagtg	cctcaatcag	9300	
aagataccga	gacctcaacc	tacaccgaga	cacgtgcatg	gtcagaggaa	ggtggccccc	9360	
attaacatct	tccacagtcg	aatctaccat	aatttcccta	ttcaacgcag	ataagaatca	9420	
gtactaaacc	acaagtgcaa	aaattaacaa	aacaccagca	taagtgaaat	cctgtctgtg	9480	
attagcaaca	cgaatgatct	tcaatcctgt	tgcaattcgc	cagtgataat	tgtattcaca	9540	
ttgtggccac	aatatactgt	cttttcccat	tgaaaaataa	ggctgaatct	attacgctac	9600	
acaaacttac	aggattagca	ccacgacggc	tcaatactat	acctattggt	cacggctcga	9660	
tgtgttaatc	acttatattg	tattcatttg	aaattactca	ttaggcaaat	actttgatta	9720	
agaaaaaata	attggaaaac	cagaaaatcc	ctaggtattt	aaattcctat	ctccggagat	9780	
ccgagataat	taatcaagca	atgagggaac	aatggtgaac	aacaacatat	tgttgccccc	9840	
tttagattgg	tcagttccaa	aaacaagtga	tgaagattaa	tgcagatgtc	caaggaacac	9900	
atatttgtga	tttaaacgtt	ccagttagac	tctgttcaag	gatetteate	ttttgtagct	9960	
ccactctgag	tcacaacata	attgagtttt	tgctcagaac	agttatcagg	attaaattct	10020	
ctcaaataac	tgaaactact	agcatcactc	tcaatttcat	tacttacgac	aatcattatc	10080	
ttaataatat	ttctctaaat	tactgactta	attagcttgt	aatcagataa	tatcgaaacc	10140	
aatttatcat	aaggcataat	ttgtataagt	gatttaggat	ttaccccaga	agtgaaataa	10200	
ttcttagaat	aaaagaccga	ctagaatatc	cttaaggctg	tctaacgtgc	cacacageta	10260	
gggttagcct	gacatctgga	acaagatcga	tactaatata	gggatttgtt	tcatactagc	10320	
tctctgcaaa	cacaatggct	aaggcaacag	gtaggtacaa	cttggtttca	cctaaaaagg	10380	
acctcgagag	ggggcttgtt	ttgagtgatt	tgtgcacgtt	tttagttgat	cagactatcc	10440	

-continued

aggggtggcg ggtgacttgg gttgggattg aatttgacat cgcccagaaa gggatggctc 10500 tactgcatcg gttaaaaact gctgacttcg ctcctgcatg gtcgatgaca aggaatttat 10560 tteeteattt attteaaaat teaaatteta etattgagte teeeetetgg geattaegag 10620 tgattetgge agetggtatt caagaceagt taattgacea ateettggta gaacegttgg 10680 ccggagccct gagcttagtc tccgattggc ttcttacaac aaacacaaac cattttcaaa 10740 tgcgcacgca gcacgctaaa gagcaactga gcttgaagat gctatcatta gtgcgctcta 10800 atatettgaa atteateagt caattggaeg eactaeatgt egtgaaetae aatggaetet 10860 tgagcagtat cgaaattggc actagaaatc ataccattat catcacaaga accaacatgg 10920 gtttcctggt agaattacag gagcctgata aatctgccat gaatcaaaag aaaccaggac 10980 cagtcaagtt ctccctcctg catgaatcaa ccttcaaggc tctaatcaaa aaacccgcaa 11040 ctaagatgca ggccttgatt ctggaattta acagctccct ggcaatatag tccaacgcta 11100 ccaaccatca ttttttgtaa ctgcatctct tttatttcct ttctaacttg atacaattat 11160 aatcaagatc cctaatccct tttgacgaag tgggctaatt tttgctcatt ctaataataa 11220 atcataacct gaataaaaga caccacaata ttataaccca ataacaccta gagaatttct 11280 gaattgctaa agattatata ctcgcactaa gagacaagtt aatcaatctt tacttaataa 11340 tatactaaat gctagatagc tctggctaac taacctgagt tgtggattac tccttttaaa 11400 agtctatcaa tttaagctta tcactaatat taaggaggac tttttaaata agagcaagtg 11460 ttatgtagtc ttactaagaa tgatttgagg aagattaaga aaaagtgctt gtggggtctt 11520 tccgttgtag aggacacacg agcaaacttc ttcctctaat tttaatatgg caactcaaca 11580 tacacaatat ccagatgcaa gattatette acceattgte ttagateaat gtgatettgt 11640 cacccgtgct tgcggtctgt attcttcata ctcattaaat cctcagttga aaaattgtag 11700 actaccaaaa catatttacc gcctcaaatt tgatgctacg gttacaaaat ttttaagcga 11760 tgttccaata gttacattgc cgatagatta cttgacccct ttacttttac gaactttatc 11820 cggggagggc ttatgccctg tcgaaccaaa gtgcagccaa ttcttagatg aaatagtaag 11880 ttatgttttg caggatgcac gttttttaag atactatttt aggcatgttg gagtacacga 11940 tgacaatgtt ggaaaaaatt ttgagccaaa gattaaggct ttgatttatg ataatgaatt 12000 tctgcaacaa ttgttttatt ggtacgattt agcaatccta acgcgtagag ggcgcctgaa 12060 tcgagggaat aaccgttcaa catggtttgc aaatgacgat ttaatagaca ttctcgggta 12120 cggtgattat attttctgga aaataccgtt gtcattgttg tcactcaaca cagaggggat 12180 teeteatgea getaaggaet ggtateacge ateaatette aaagaagegg tteaaggtea 12240 cacacatatc gtgtcagttt ccactgcaga tgttttaatt atgtgtaagg acatcataac 12300 ctgtcgtttc aataccacac tcattgcagc attggcaaat ttagaagatt ctatctgttc 12360 tgactatcca caacctgaaa caatctctaa tctgtataag gcaggggatt acttaatctc 12420 gatactgggt tcagaaggtt ataaggtcat aaagttttta gaaccactat gtttagctaa 12480 gateceaattg tgeteaaatt acaetgagag gaaagggaga tteettaete aaatgeattt 12540 ggccgttaat cacacacttg aagaacttat tgagggccgg ggattgaagt cacaacaaga 12600 ctggaagatg agggaatttc accgaatctt agtaaattta aagtcaacac cacaacaact 12660 ctgtgaattg ttttcagtgc aaaagcattg ggggcatcct gtgctacata gcgagaaggc 12720

-continued

tattcagaaa gtaaagaaac atgcaaccgt aataaaagca ttgcgtcccg taatcatctt 12780 tgagacatat tgtgtgttca agtacagcat tgccaaacat tattttgata gccaagggtc 12840 atggtatagt gtaatctcag ataaacatct aacaccaggt ttacactctt acattaagag 12900 gaaccaattt ccgccactgc ctatgattaa agacttattg tgggaattct atcaccttga 12960 tcatcctccc ttattttcca ccaagattat tagtgacttg agtattttca ttaaggatcg 13020 cgctaccgca gtggaaaaaa catgttggga tgcagttttc gagcctaatg ttcttggata 13080 tagteeteea aacaagttet caactaagag ggtteetgaa cagtteetg aacaagaaaa 13140 tttctcgatt gatagtgttc tcacttatgc ccagcgcctg gattatctac ttccacaata 13200 ccggaatttt tctttctcac ttaaggaaaa agaattaaat gtaggacgag cttttggtaa 13260 gctaccttat cctacacgta atgttcaaac tttatgtgaa gccttattgg cagatggatt 13320 agctaaagcc tttcctagta acatgatggt tgtaacagag cgtgagcaga aggaaagcct 13380 cttgcaccag gcgtcgtggc accacacaag tgacgatttc ggtgagaatg ccactgttag 13440 aggcagcagt tttgttaccg acctagaaaa atacaacttg gcatttagat atgagtttac 13500 ageteeattt attgaataet gtaategatg ttatggtgta aaaaatttat teaattggat 13560 gcattatacg ataccgcaat gttatataca tgtaagtgat tattataatc cccctcatgg 13620 agtttcgcta gaaaatcggg aagatccccc ggaaggccct agctcttacc gtggtcatct 13680 tgggggaatt gagggactcc aacagaaact ctggaccagc atttcatgtg cacaaatctc 13740 attagttgag atcaagactg gtttcaaatt gagatctgcg gtaatgggtg ataatcaatg 13800 catcacagtt ctttccgtat ttcctctaga gacagattcc aatgagcaag agcatagctc 13860 cgaggacaat gctgctcgcg tagcagccag tttagccaaa gtcacgagtg cctgtggcat 13920 cttcctaaaa ccagatgaga cttttgtgca ttcaggcttt atttatttcg gtaagaagca 13980 atatttaaat ggcgttcaat tgccacaatc actcaagact gctaccagga ttgctccctt 14040 gtcagatgca atctttgatg accttcaggg aactctggct agtataggaa cggcatttga 14100 gagatetata teegagaeta gaeatgtata eeettgeegg gtggttgeeg eatteeatae 14160 attettetee gttaggatee tecaatacea ceacettggt tteaacaaag gaacegatet 14220 aggtcaacta tcactaagca aaccgttgga tttcggaact atcactcttg ctttagcggt 14280 acctcaagtt ctaggaggtt tatcgttttt aaacccagag aaatgttttt atcgcaacct 14340 tggagacccc gtgacctccg gcctattcca acttaggact tacctgcaaa tgatcaacat 14400 ggacgactta tttctacctt taattgccaa gaaccccggg aactgtagtg caattgactt 14460 tgtactcaac ccaagcggat tgaatgtccc tgggtcacaa gacctaacat ctttttacg 14520 tcagatagtg cgtagaacaa tcacattgag tgcaaaaaat aagctaataa acacattgtt 14580 tcactcctca gccgatttag aagatgagat ggtatgtaaa tggctacttt cttcaacacc 14640 tgtaatgagt cggtttgctg ctgatatatt ctctcgtact ccgagtggga agcgcttgca 14700 gatectaggt tatttagaag ggaetagaae ettgetagee teeaaagtea teaataacaa 14760 tgcagagact cctattttag ataggttgag gaaaatcaca ctgcagagat ggagtttgtg 14820 gtttagctac ctagaccact gtgatcaggt tctagcagat gctttaataa aagtttcttg 14880 tacagttgat ttggcgcaaa ttttacgtga atatacctgg gcacacatac tagagggaag 14940 acageteatt ggtgeaacae tteettgeat gttagaacaa tttaatgtgt tttggeteaa 15000

-continued

atcqtacqaa caatqcccta aatqtqcaaa atctaqaaat ccaaaaqqaq aqccatttqt 15060 gtcaattgca attaagaaac aagttgtgag tgcatggccg aatcagtcac ggttaaattg 15120 gaccattggg gacggtgtac cttacatcgg gtctcgaaca gaggacaaga ttgggcagcc 15180 agcaatcaag cctaagtgtc cctctgctgc cttacgtgaa gcaatagagt tgacatctag 15240 actaacatgg gttacccaag gtggtgccaa tagtgatttg ctagttaaac cttttgtaga 15300 ggcacgagta aacctgagtg tgcaggagat cetteaaatg acgeettete attatteagg 15360 gaacatcgta catcggtata atgaccaata cagccctcat tettteatgg caaatagaat 15420 gagtaattee gegaegagat tggtggtgte gaeaaataet eteggggagt teteaggtgg 15480 ggggcaatca gcaagggaca gcaatatcat ctttcaaaat gtaatcaatt tttcggttgc 15540 cctatttgat ttacgatttc ggaacaccga aacatcctcc attcagcata atcgtgccca 15600 tetecatett teacagtgtt geacaeggga agteceaget caataeetaa eetaeaegte 15660 tacgetttee ttggatetea caaggtaeeg agagaatgag ttaatttatg ataacaatee 15720 gttaaaaggt ggacttaatt gcaacctatc ctttgataat ccacttttca agggccaaag 15780 gctcaatatc atagaggagg atttgattag atttcctcat ctatctgggt gggaacttgc 15840 gaaaaccatc attcagtcca ttatctcaga cagcaataac tcatccacag accccattag 15900 cagtggagaa acacgatcat tcacaactca ctttctcaca tatcctaagg ttgggctcct 15960 ctatagtttc ggcgccatcg tgagttatta cttagggaat accattatta ggaccaaaaa 16020 gctagacctc agtcatttta tgtattactt aacaactcaa atccataatt tgccacatcg 16080 ctcgttgagg atacttaagc ccacctttaa acatgttagt gtgatatcaa gactaatgag 16140 tattgatcct catttttcaa tctacatcgg gggtacggca ggtgatcgag ggctttcgga 16200 tgctaccaga ctattccttc gagtggccat ttcttccttc cttcaattta tcaaaaaatg 16260 gatcgtggaa tacaagacag ctattcctct gtgggttata taccctttgg agggacaaaa 16320 tccagatcca attaatagct ttctacatct gattatagcc ttactgcaaa atgaatcccc 16380 tcaaaacaac atccaattcc aagaagacag aaataatcaa cagttgtccg ataatctagt 16440 ttacatgtgc aagagcactg ccagtaattt cttccatgca tcacttgcct attggaggag 16500 ccggcacaaa ggacggccca aaaatcgatc gaccgaagaa cagacagtta aacccatacc 16560 atatgataat tttcattctg ttaaatgtgc ctcaaaccca ccaagcatcc ccaaatctaa 16620 gtcaggaact caaggttcaa gcgcattttt tgagaaactt gaatatgata aagaaagaga 16680 attgccaaca gettecaeac cageegaaca atecaagaee tatateaagg eeetateeag 16740 ccgaatttat catggtaaaa caccatccaa tgccgcaaaa gatgattcaa caacctccaa 16800 gggctgcgat tccaaagaag aaaatgccgt tcaagcttca caccgaattg tcctaccatt 16860 ttttacattg tcacagaacg actacagaac tccctcagct aaaaagtcag agtatataac 16920 tgaaatcacc aaactaattc gacaattaaa ggcaattcca gataccactg tatactgtcg 16980 ctttacaggg gttgtatctt caatgcatta taagcttgat gaggttctct gggaattcga 17040 tagtttcaaa actgctgtga ctctagctga aggagaaggg tcaggtgcct tattactact 17100 acaaaaatat aaggtcagaa caatctttt taacacttta gctacagagc atagcatcga 17160 ggcagaaata gtttctggga caaccacacc tcgaatgctc cttcctgtaa tggccaaact 17220 tcatgatgat caaataaatg taatattaaa caattctgct agccaggtta ctgatatcac 17280

-continued

taaccetgea togtteactg accagaaate tagaateece acacaagttg agattatgae 17340 tatggatgct gaaacgacag aaaatattaa tcggtcaaaa ttatatgagg ctattcagca 17400 attaattgtt tcacacattg atacaagggt gctaaagatt gttattataa aggttttttt 17460 aagtgatatt gaaggtetee tgtggettaa tgaceatett geeeettat teggateegg 17520 ctatttaatt aaacctatta cttcgagtcc aaagtcaagc gaatggtact tatgtctttc 17580 aaattteett teageetete gaegaeggee teateagggt eatgetaeet gtatgeaagt 17640 catccaaaca gcgctacgac tccaagttca aaggagttca tactggctta gccatttagt 17700 gcaatatgct gatattaatt tgcacttgag ttatgttaat ttgggtttcc cttcattgga 17760 aaaggttett taccategat ataacetagt tgatteaegg aagggteeae tggtetegat 17820 cctttaccat ttaacacact tgcaagcaga gattagagaa ttagtgtgtg actataatca 17880 gcaacgacaa agtcgaaccc aaacatacca cttcatcaaa acgacaaagg gccggattac 17940 aaaattagtc aatgactacc ttaaatttta tctcgtagtg caagcactga agcataattg 18000 tctttggcag gaagaactca gaacacttcc tgacttaatc aatgtttgca atcgatttta 18060 ccatataagg gactgctcat gtgaagatcg atttttaatt caaactcttt acttaacccg 18120 tatgcaagac tcagaagcaa aattaatgga gagattaacc gggtttctag gattgtatcc 18180 taatggtatt aacgcttaag atccccttag aggcatcgca atatgactcc aaacattaaa 18240 tgatattgct gtcaatacat ctacctgacc gagagcaagg tttattataa aaaacctata 18300 cacatgactg caatgcgtaa tttataccga aacacagtga gggctgcaca tgcaggttcc 18360 tgttgagett taaaagatea tgeaatataa aatgatattt gtataetaat eatgttagta 18420 ctaactaaca gtactcactg catatactct atcaattaag aaaaattact gtggtttatg 18480 catttaaatg acatcacaga tggatataat atagttaatt cttacctaaa tgttgagtta 18540 tagtaatttg aagttataat tatgattagt gettataeta taaataatag etataecaag 18600 tatacacaag aagttatgat tttgtattca aattatattc acaggaactt gtgattaata 18660 ataaaaqtct caqttqttqq ttqttqaqtt qtaaaactcc cqttaaaaat ttattttcca 18720 cttataacta ataataatca tagatcagta tgagttgagg ctattcaaac cttagaaaaaa 18780 ttgtgcgatg ttttttacca tgtcaatctt gatttcaatg atattggagg gcttgtcgat 18840 aaattcagta attaacatta agtcagtgtg gaacctcatt ggatatttga tcgtacacaa 18900 aatatettta caaaattgtt ttetetttt tgtgtgteea 18940 <210> SEQ ID NO 2 <211> LENGTH: 2210 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Bundibugyo ebolavirus L viral protein <400> SEOUENCE: 2 Met Ala Thr Gln His Thr Gln Tyr Pro Asp Ala Arg Leu Ser Ser Pro

Ile Val Leu Asp Gln Cys Asp Leu Val Thr Arg Ala Cys Gly Leu Tyr 20 25 30

Ser Ser Tyr Ser Leu Asn Pro Gln Leu Lys Asn Cys Arg Leu Pro Lys 35 40 45

												0011	CIII	ucu	
His	Ile 50	Tyr	Arg	Leu	ГЛа	Phe 55	Asp	Ala	Thr	Val	Thr 60	ГЛа	Phe	Leu	Ser
Asp 65	Val	Pro	Ile	Val	Thr 70	Leu	Pro	Ile	Asp	Tyr 75	Leu	Thr	Pro	Leu	Leu 80
Leu	Arg	Thr	Leu	Ser 85	Gly	Glu	Gly	Leu	Суз 90	Pro	Val	Glu	Pro	Lys 95	Сув
Ser	Gln	Phe	Leu 100	Aap	Glu	Ile	Val	Ser 105	Tyr	Val	Leu	Gln	Asp 110	Ala	Arg
Phe	Leu	Arg 115	Tyr	Tyr	Phe	Arg	His 120	Val	Gly	Val	His	Asp 125	Asp	Asn	Val
Gly	Lys 130	Asn	Phe	Glu	Pro	Lys 135	Ile	Lys	Ala	Leu	Ile 140	Tyr	Asp	Asn	Glu
Phe 145	Leu	Gln	Gln	Leu	Phe 150	Tyr	Trp	Tyr	Asp	Leu 155	Ala	Ile	Leu	Thr	Arg 160
Arg	Gly	Arg	Leu	Asn 165	Arg	Gly	Asn	Asn	Arg 170	Ser	Thr	Trp	Phe	Ala 175	Asn
Aap	Asp	Leu	Ile 180	Asp	Ile	Leu	Gly	Tyr 185	Gly	Asp	Tyr	Ile	Phe 190	Trp	Lys
Ile	Pro	Leu 195	Ser	Leu	Leu	Ser	Leu 200	Asn	Thr	Glu	Gly	Ile 205	Pro	His	Ala
Ala	Lys 210	Asp	Trp	Tyr	His	Ala 215	Ser	Ile	Phe	Lys	Glu 220	Ala	Val	Gln	Gly
His 225	Thr	His	Ile	Val	Ser 230	Val	Ser	Thr	Ala	Asp 235	Val	Leu	Ile	Met	Сув 240
Lys	Asp	Ile	Ile	Thr 245	СЛа	Arg	Phe	Asn	Thr 250	Thr	Leu	Ile	Ala	Ala 255	Leu
Ala	Asn	Leu	Glu 260	Asp	Ser	Ile	Суз	Ser 265	Asp	Tyr	Pro	Gln	Pro 270	Glu	Thr
Ile	Ser	Asn 275	Leu	Tyr	ГЛа	Ala	Gly 280	Asp	Tyr	Leu	Ile	Ser 285	Ile	Leu	Gly
Ser	Glu 290	Gly	Tyr	ГЛЗ	Val	Ile 295	Lys	Phe	Leu	Glu	Pro 300	Leu	Суз	Leu	Ala
Lув 305	Ile	Gln	Leu	Сүз	Ser 310	Asn	Tyr	Thr	Glu	Arg 315	Lys	Gly	Arg	Phe	Leu 320
Thr	Gln	Met	His	Leu 325	Ala	Val	Asn	His	Thr 330	Leu	Glu	Glu	Leu	Ile 335	Glu
Gly	Arg	Gly	Leu 340	Lys	Ser	Gln	Gln	Asp 345	Trp	Lys	Met	Arg	Glu 350	Phe	His
Arg	Ile	Leu 355	Val	Asn	Leu	Lys	Ser 360	Thr	Pro	Gln	Gln	Leu 365	Сүз	Glu	Leu
Phe	Ser 370	Val	Gln	Lys	His	Trp 375	Gly	His	Pro	Val	Leu 380	His	Ser	Glu	Lys
Ala 385	Ile	Gln	Lys	Val	Lys 390	ГЛЗ	His	Ala	Thr	Val 395	Ile	ГЛЗ	Ala	Leu	Arg 400
Pro	Val	Ile	Ile	Phe 405	Glu	Thr	Tyr	Cys	Val 410	Phe	Lys	Tyr	Ser	Ile 415	Ala
Lys	His	Tyr	Phe 420	Asp	Ser	Gln	Gly	Ser 425	Trp	Tyr	Ser	Val	Ile 430	Ser	Asp
Lys	His	Leu 435	Thr	Pro	Gly	Leu	His 440	Ser	Tyr	Ile	ГЛа	Arg 445	Asn	Gln	Phe

			-
-	cont	inu	ed

											-	con	tin	uea		
Pro	Pro 450	Leu	Pro	Met	Ile	Lys 455	Asp	Leu	Leu	Trp	Glu 460	Phe	Tyr	His	Leu	
Asp 465	His	Pro	Pro	Leu	Phe 470	Ser	Thr	Lys	Ile	Ile 475	Ser	Asp	Leu	Ser	Ile 480	
Phe	Ile	Lys	Asp	Arg 485	Ala	Thr	Ala	Val	Glu 490	Lys	Thr	Суз	Trp	Asp 495	Ala	
Val	Phe	Glu	Pro 500	Asn	Val	Leu	Gly	Tyr 505	Ser	Pro	Pro	Asn	Lys 510	Phe	Ser	
Thr	Lys	Arg 515	Val	Pro	Glu	Gln	Phe 520	Leu	Glu	Gln	Glu	Asn 525	Phe	Ser	Ile	
Asp	Ser 530	Val	Leu	Thr	Tyr	Ala 535	Gln	Arg	Leu	Asp	Tyr 540	Leu	Leu	Pro	Gln	
Tyr 545	Arg	Asn	Phe	Ser	Phe 550	Ser	Leu	Гла	Glu	Lys 555	Glu	Leu	Asn	Val	Gly 560	
Arg	Ala	Phe	Gly	Lys 565	Leu	Pro	Tyr	Pro	Thr 570	Arg	Asn	Val	Gln	Thr 575	Leu	
Суз	Glu	Ala	Leu 580	Leu	Ala	Asp	Gly	Leu 585	Ala	Lys	Ala	Phe	Pro 590	Ser	Asn	
Met	Met	Val 595	Val	Thr	Glu	Arg	Glu 600	Gln	Lys	Glu	Ser	Leu 605	Leu	His	Gln	
Ala	Ser 610	Trp	His	His	Thr	Ser 615	Asp	Asp	Phe	Gly	Glu 620	Asn	Ala	Thr	Val	
Arg 625	Gly	Ser	Ser	Phe	Val 630	Thr	Asp	Leu	Glu	Lys 635	Tyr	Asn	Leu	Ala	Phe 640	
Arg	Tyr	Glu	Phe	Thr 645	Ala	Pro	Phe	Ile	Glu 650	Tyr	Сүз	Asn	Arg	Сув 655	Tyr	
Gly	Val	Lys	Asn 660	Leu	Phe	Asn	Trp	Met 665	His	Tyr	Thr	Ile	Pro 670	Gln	Сув	
Tyr	Ile	His 675	Val	Ser	Asp	Tyr	Tyr 680	Asn	Pro	Pro	His	Gly 685	Val	Ser	Leu	
Glu	Asn 690	Arg	Glu	Asp	Pro	Pro 695	Glu	Gly	Pro	Ser	Ser 700	Tyr	Arg	Gly	His	
Leu 705	Gly	Gly	Ile	Glu	Gly 710	Leu	Gln	Gln	Lys	Leu 715	Trp	Thr	Ser	Ile	Ser 720	
Сүв	Ala	Gln	Ile	Ser 725	Leu	Val	Glu	Ile	Lys 730	Thr	Gly	Phe	LYa	Leu 735	Arg	
Ser	Ala	Val	Met 740	Gly	Asp	Asn	Gln	Cys 745	Ile	Thr	Val	Leu	Ser 750	Val	Phe	
Pro	Leu	Glu 755	Thr	Asp	Ser	Asn	Glu 760	Gln	Glu	His	Ser	Ser 765	Glu	Asp	Asn	
Ala	Ala 770	Arg	Val	Ala	Ala	Ser 775	Leu	Ala	Lys	Val	Thr 780	Ser	Ala	Суз	Gly	
Ile 785	Phe	Leu	Lys	Pro	Asp 790	Glu	Thr	Phe	Val	His 795	Ser	Gly	Phe	Ile	Tyr 800	
Phe	Gly	Lys	Гла	Gln 805	Tyr	Leu	Asn	Gly	Val 810	Gln	Leu	Pro	Gln	Ser 815	Leu	
Lys	Thr	Ala	Thr 820	Arg	Ile	Ala	Pro	Leu 825	Ser	Asp	Ala	Ile	Phe 830	Asp	Asp	
Leu	Gln	Gly 835	Thr	Leu	Ala	Ser	Ile 840	Gly	Thr	Ala	Phe	Glu 845	Arg	Ser	Ile	
Ser	Glu	Thr	Arg	His	Val	Tyr	Pro	Суз	Arg	Val	Val	Ala	Ala	Phe	His	

```
-continued
```

-continued
850 855 860
Thr Phe Phe Ser Val Arg Ile Leu Gln Tyr His His Leu Gly Phe Asn865870875880
Lys Gly Thr Asp Leu Gly Gln Leu Ser Leu Ser Lys Pro Leu Asp Phe 885 890 895
Gly Thr Ile Thr Leu Ala Leu Ala Val Pro Gln Val Leu Gly Gly Leu 900 905 910
Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 915 920 925
Val Thr Ser Gly Leu Phe Gln Leu Arg Thr Tyr Leu Gln Met Ile Asn 930 935 940
Met Asp Asp Leu Phe Leu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 945 950 955 960
Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 965 970 975
Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980 985 990
Thr Leu Ser Ala Lys Asn Lys Leu Ile Asn Thr Leu Phe His Ser Ser 995 1000 1005
Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser 1010 1015 1020
Thr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Thr 1025 1030 1035
Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 1040 1045 1050
Arg Thr Leu Leu Ala Ser Lys Val Ile Asn Asn Asn Ala Glu Thr 1055 1060 1065
Pro Ile Leu Asp Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 1070 1075 1080
Leu Trp Phe Ser Tyr Leu Asp His Cys Asp Gln Val Leu Ala Asp 1085 1090 1095
Ala Leu Ile Lys Val Ser Cys Thr Val Asp Leu Ala Gln Ile Leu 1100 1105 1110
Arg Glu Tyr Thr Trp Ala His Ile Leu Glu Gly Arg Gln Leu Ile 1115 1120 1125
Gly Ala Thr Leu Pro Cys Met Leu Glu Gln Phe Asn Val Phe Trp 1130 1135 1140
Leu Lys Ser Tyr Glu Gln Cys Pro Lys Cys Ala Lys Ser Arg Asn 1145 1150 1155
Pro Lys Gly Glu Pro Phe Val Ser Ile Ala Ile Lys Lys Gln Val 1160 1165 1170
Val Ser Ala Trp Pro Asn Gln Ser Arg Leu Asn Trp Thr Ile Gly 1175 1180 1185
Asp Gly Val Pro Tyr Ile Gly Ser Arg Thr Glu Asp Lys Ile Gly 1190 1195 1200
Gln Pro Ala Ile Lys Pro Lys Cys Pro Ser Ala Ala Leu Arg Glu 1205 1210 1215
Ala Ile Glu Leu Thr Ser Arg Leu Thr Trp Val Thr Gln Gly Gly 1220 1225 1230
Ala Asn Ser Asp Leu Leu Val Lys Pro Phe Val Glu Ala Arg Val 1235 1240 1245

```
-continued
```

_															
A	sn	Leu 1250		Val	Gln	Glu	Ile 1255	Leu	Gln	Met	Thr	Pro 1260	Ser	His	Tyr
Se	ər	Gly 1265	Asn	Ile	Val	His	Arg 1270		Asn	Asp	Gln	Tyr 1275	Ser	Pro	His
Se	ər	Phe 1280	Met	Ala	Asn	Arg	Met 1285	Ser	Asn	Ser	Ala	Thr 1290	Arg	Leu	Val
Va	al	Ser 1295	Thr	Asn	Thr	Leu	Gly 1300	Glu	Phe	Ser	Gly	Gly 1305	Gly	Gln	Ser
A.	la	Arg 1310	Asp	Ser	Asn	Ile	Ile 1315	Phe	Gln	Asn	Val	Ile 1320	Asn	Phe	Ser
Vá	al	Ala 1325	Leu	Phe	Asp	Leu	Arg 1330	Phe	Arg	Asn	Thr	Glu 1335	Thr	Ser	Ser
I	le	Gln 1340	His	Asn	Arg	Ala	His 1345	Leu	His	Leu	Ser	Gln 1350	Суз	Суз	Thr
A	rg	Glu 1355	Val	Pro	Ala	Gln	Tyr 1360	Leu	Thr	Tyr	Thr	Ser 1365	Thr	Leu	Ser
Le	eu	Asp 1370	Leu	Thr	Arg	Tyr	Arg 1375	Glu	Asn	Glu	Leu	Ile 1380	Tyr	Asp	Asn
A	sn	Pro 1385	Leu	Гла	Gly	Gly	Leu 1390	Asn	Суз	Asn	Leu	Ser 1395	Phe	Asp	Asn
Pı	ro	Leu 1400	Phe	Lys	Gly	Gln	Arg 1405	Leu	Asn	Ile	Ile	Glu 1410	Glu	Asp	Leu
1	le	Arg 1415	Phe	Pro	His	Leu	Ser 1420	Gly	Trp	Glu	Leu	Ala 1425	Lys	Thr	Ile
1	le	Gln 1430	Ser	Ile	Ile	Ser	Asp 1435	Ser	Asn	Asn	Ser	Ser 1440	Thr	Asp	Pro
1	le	Ser 1445	Ser	Gly	Glu	Thr	Arg 1450	Ser	Phe	Thr	Thr	His 1455	Phe	Leu	Thr
T	yr	Pro 1460	Lys	Val	Gly	Leu	Leu 1465	Tyr	Ser	Phe	Gly	Ala 1470	Ile	Val	Ser
T	yr	Tyr 1475	Leu	Gly	Asn	Thr	Ile 1480	Ile	Arg	Thr	Lys	Lys 1485	Leu	Asp	Leu
Se	ər	His 1490	Phe	Met	Tyr	Tyr	Leu 1495	Thr	Thr	Gln	Ile	His 1500	Asn	Leu	Pro
H:	is	Arg 1505	Ser	Leu	Arg	Ile	Leu 1510		Pro	Thr	Phe	Lys 1515	His	Val	Ser
Vá	al	Ile 1520	Ser	Arg	Leu	Met	Ser 1525	Ile	Asp	Pro	His	Phe 1530	Ser	Ile	Tyr
		Gly 1535	Gly	Thr			Asp 1540					Asp 1545	Ala	Thr	Arg
Le	eu	Phe 1550	Leu	Arg	Val	Ala	Ile 1555	Ser	Ser	Phe	Leu	Gln 1560	Phe	Ile	Lys
L	γs	Trp 1565	Ile	Val	Glu	Tyr	Lys 1570	Thr	Ala	Ile	Pro	Leu 1575	Trp	Val	Ile
Т	yr	Pro 1580	Leu	Glu	Gly	Gln	Asn 1585	Pro	Asp	Pro	Ile	Asn 1590	Ser	Phe	Leu
H:	is	Leu 1595	Ile	Ile	Ala	Leu	Leu 1600	Gln	Asn	Glu	Ser	Pro 1605	Gln	Asn	Asn
1	le	Gln 1610	Phe	Gln	Glu	Asp	Arg 1615	Asn	Asn	Gln	Gln	Leu 1620	Ser	Asp	Asn

eeu Val Tyr Met Cys Lys Ser Thr Ala Ser Asn Phae Phe His Ala 1635 Field Thr Ala Ser Asn Phae Phe His Ala 1640 Thr Glu Glu Gln Thr Val Lys Pro IL Pro Tyr Asp Asn 1660 Is60 As Pro Pro Ser Ile Pro Lys Asn 1650 Is60 As Ser Asn Pro Pro Ser Ile Pro Lys 1685 Ser Oly Thr Glu Glu Glu Thr Val Lys Pro IL Phe His Asp Asp Ile Pro Lys 1685 Ser Oly Thr Glu Glu Leeu Pro Thr Ala Ser Thr Pro Ala Interpretation 1695 Lys Thr Pro Ser Asn Ala Ala Lys Asp Asp Ser Thr Thr 175 Ile Pro Tra Ala Ser Thr Pro Ala 1700 Lys Thr Pro Ser Asn Ala Ala Lys Asp Asp Ser Thr Thr 175 Thr Pro Ser Ala Lys Lys Asp Asp Ser Thr Thr 175 1610 Lys Thr Pro Ser Ala Lys Lys Ser Glu Tyr IIe Thr Glu IIe Thr 175 Glu Clu Asn Ala Val Gln Ala Ser Iffs 175 1740 Fro Ser Ala Lys Lys Ser Ser Met He Tyr Lys												- COI	ntir	nuec	L	 	
1640 1645 1650 1650 Vers Ser Thr Glu Glu Gln Thr Val Lyø Pro IIe Pro Tyr Asp Asm 1650 Ser Lys Ser Val Lyø Cyø Ala Ser Asm Pro Pro Ser Ile Pro Lyø 1650 Ser Val Lyø Cyø Ala Ser Ser Ala Phe Phe Glu Lyø Leu 1680 Ser Cly Thr Glu Glu Arg Glu Leu Pro Thr Ala Ser Thr Pro Ala 1710 Ser Lyø Thr Tyr Tl Lyø Ala Leu Ser Ser Arg IIe Tyr Thr Pro Ser Am 1610 Gly Cyø Asp Ser Lyø Glu Glu Asm Ala Val Gln Ala Ser 1740 Gly Cyø Asp Ser Lyø Glu Glu Asm Ala Val Gln Ala Ser 1745 Tros Glu Tyr IIe Thr Glu Glu Asm Ala Val Gln Ala Ser 1745 Tros For Mar Mala Ser Tros Glu Tyr IIe Thr Glu Thr Tyr 1745 Tros For Mar Mala Ser Tros Glu Tyr IIe Thr Glu Cle Thr Tyr 1755 For Ser Ala Lyø Lyø Ser Glu Tyr IIe Thr Glu Thr Tyr Tyr 1756 For Thr Thr Glu Thr Val Tyr Tros Tros For Mar Mar Mar Mar Mar Mar Mar Mar Mar Ma	Leu			Met	Суз	Lys			Ala	Ser	Asn		Phe	His	Ala		
1655 1660 1665 1655 1660 1660 1657 1675 1675 1660 1660 1660 1660 1675 1675 1675 1675 1675 1685 170 110 110 1695 170 110 110 110 1695 170 110 110 110 110 1601 170 111 110 110 110 110 110 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1111 1111 1111	Ser			Tyr	Trp	Arg		Arg	His	Lys	Gly		Pro	Гла	Asn		
1670 1675 1680 1470 1675 1680 148 1yes Ser Gly Thr Glu Gly Ser Ser Ala Phe Phe Glu Lye Leu 141 Tyr Aep Lye Glu Arg Glu Leu Pro Thr Ala Ser Thr Pro Ala 140 110 Ser Lye Thr Tyr He Lye Ala Leu Ser Ser Thr Thr 141 Gly Lye Thr Pro Ser Asn Ala Lue Arg Ang Ser Thr Thr 143 Gly Cye Aep Ser Lye Glu Glu Ang Glu Glu Ang Glu Glu Ang Ala Leu Ser Ser Thr Thr 143 Arg It Van Glu Cye Aep Ser Lye Glu Glu Ang Ala Leu Ser Glu Ang Ang Tyr 1457 Yr Gly Cye Aep Ser Lye Glu Glu Ang Ala Leu Ser Glu Ang Ang Tyr 1750 The Val Leu Pro Phe Phe Thr Leu Ser Glu Ang Ang Tyr Tyr 1770 It Arg Glu Lye Lye Ser Glu Tyr It Pro Ang Tyr Tyr 1770 It Arg Glu Lye Lye Ser Glu Tyr The Thr Val Tyr 1770 It Arg Glu Lye Lye Ser Glu Tyr The Thr Val Tyr 1770 It Arg Glu Cly Ser Glu Yee Chu Ang Tyr The Leu Irg	Arg			Glu	Glu	Gln			Lys	Pro	Ile		Tyr	Asp	Asn		
1685 1690 1695 144 Yr Åss Lys Glu Årg Glu Pro Th Åla Ser Th Pro Åla 141 Gln Ser Lys Th Tyr Åla Leu Pro Th Åla Ser Arg Ile Tyr 113 Gln Vas Th Tyr Trado Ala Ala Leu Arg Arg Ser Th Th 114 Gln Vas Th Tyr Trado Ala Ala Leu Arg Ser Th Th Th Tyr Ala Ala Lau Arg Arg Gln Ala Ser Gln Ala Ser Th	Phe			Val	Lys	Сув		Ser	Asn	Pro	Pro		Ile	Pro	Lys		
1700 1705 1710 11u Gin Ser Lys Thr Tyr He Lys Ala Leu Ser Ser Arg Ile Tyr 1720 11s Gly Lys Thr Pro Ser Ann Ala Ala Lys Asp Asp Ser Thr Thr 1735 Gly Cys Asp Ser Lys Glu Glu Asn Ala Val Gln Ala Ser 1746 Tron Tron Ser Ann Ala Ala Lys Asp Asp Ser Thr Thr 1746 Gly Cys Asp Ser Lys Glu Glu Asn Ala Val Gln Ala Ser 1747 Tron Tron Ser Ala Lys Lys Ser Glu Tyr Ile Thr Glu Ile Thr 1770 Tron Ser Ala Lys Lys Ser Glu Tyr Ile Thr Glu Ile Thr 1770 Tron Ser Ala Lys Lys Ser Glu Tyr Ile Thr Glu Ile Thr 1770 Tron Ser Ala Lys Lys Ser Ser Met His Tyr 1780 Pro Ser Ala Lys Lys Ser Ser Met His Tyr 1800 Thr Val Tyr The Asp Asp Thr Thr Val Tyr 1805 Phe Thr Gly Val Val Val Val Ser Ser Met His Tyr Lys Lys Leu Asp 1805 Gly Glu Gly Ser Gly Ala Leu Leu Leu Leu Leu Lau Gln Lys Tyr 1807 1810 Gly Glu Gly Ser Gly Ala Leu Leu Leu Lau Thr Glu His Ser 1817 1825 Arg Thr Ile Phe Phe Asp Asp Gln Iso Asp Nal Thr 1895 1840 Ala Glu He Va Ser Gly Thr	Ser			Gly	Thr	Gln			Ser	Ala	Phe		Glu	Lys	Leu		
1715 1720 1725 184 1740 7740 1747 1747 1747 1747 174 1747 1747 1747 1747 1747 110 <td>Glu</td> <td></td> <td></td> <td>Lys</td> <td>Glu</td> <td>Arg</td> <td></td> <td>Leu</td> <td>Pro</td> <td>Thr</td> <td>Ala</td> <td></td> <td>Thr</td> <td>Pro</td> <td>Ala</td> <td></td> <td></td>	Glu			Lys	Glu	Arg		Leu	Pro	Thr	Ala		Thr	Pro	Ala		
1730 1735 1740 1740 1740 1740 1747 110	Glu		Ser	Lys	Thr	Tyr		Lys	Ala	Leu	Ser		Arg	Ile	Tyr		
1745 1750 1755 ArgHeValLeuProPhePheThrLeuSerGlnAsnAspTyr 1770 TryProSerAlaLysSerGluTyrHeThrGluHeTry 1770 TryProSerAlaLysSerGluTyrHeThrGluHeTyr 1770 TryProSerAlaLysSerGluTyrHeThrGluHe 1770 TryFroSerAlaLevProAspThrThrValTyr 1790 ProFroGluValValSerSerNetHisTyrTyr 1800 FroGluProProProProProProProProPro 1800 CuTryGluProProProProProProProPro 1800 CuTryGluProProProProProProProPro 1800 CuTryGluProProProProProProProProPro 1800 CuTryFroPro <td>His</td> <td></td> <td></td> <td>Thr</td> <td>Pro</td> <td>Ser</td> <td></td> <td>Ala</td> <td>Ala</td> <td>Lys</td> <td>Asp</td> <td></td> <td>Ser</td> <td>Thr</td> <td>Thr</td> <td></td> <td></td>	His			Thr	Pro	Ser		Ala	Ala	Lys	Asp		Ser	Thr	Thr		
176017651770arg Thr 1775Pro Ser AlaLysLysSer GluTyrIleThr 1785GluIleThr 1785avsLeuIleArg GlnLeuLysAlaIleProAspThrThrValTyr 	Ser	-	Gly	Сув	Asp	Ser	-	Glu	Glu	Asn	Ala		Gln	Ala	Ser		
1775 1780 1785 Ays Leu Ile Arg Gln Leu Lys Ala Ile Pro Asp Thr Thr Val Tyr Lys Arg Phe Th Gly Val Val Tyrs Ser Ser Ser Met His Tyr Lys Leu Asp Slu Val Leu Tyr Glu Phe Asp Gly Ala Leu Leu Asp Ha Gly Leu Tyr Glu Phe Asp Ser Ser Phe Lys Thr Ala Leu Asp Ha Gly Gly Gly Ala Leu Leu Leu Leu Ser Glu His Ser Ha Arg Th Ile Phe Phe Asp Asp Asp Glu His Ser Glu His Ser His Asp Asp Glu His Ser His Ser His Ser Hi	His			Val	Leu	Pro			Thr	Leu	Ser		Asn	Asp	Tyr		
179017951800CysArgPheThrGlyValValSerSerMetHisTyrLysLeuAsp1800LeuTrpGluPheAspSerPheLysThrAlaValThrLeu1820GlyGluGlySerGlyAlaLeuLeuLeuKaspSerPheLysThrAlaValThrLeu1830GlyGluGlySerGlyAlaLeuLeuLeuGlnLysTyr1835GlyGluGlySerGlyAlaLeuLeuLeuGluHisSer1850ArgThrIlePhePheAsnThrLeuLeuHisSerSer1855ArgThrIlePheAsnThrLeuLeuHisSerSer1865ArgThrIlePheAsnThrThrThrPheSerSer1865AsnSerMaLeuLeuKaspAspGlnIleSer </td <td>Arg</td> <td></td> <td></td> <td>Ser</td> <td>Ala</td> <td>Lys</td> <td></td> <td></td> <td>Glu</td> <td>Tyr</td> <td>Ile</td> <td></td> <td>Glu</td> <td>Ile</td> <td>Thr</td> <td></td> <td></td>	Arg			Ser	Ala	Lys			Glu	Tyr	Ile		Glu	Ile	Thr		
1805 1810 1815 Slu Val Val Val Tr Glu Pro Pro Pro Val Val Tr Leu Slu Slu Slu Slu Slu Slu Slu Val Tr Ala Leu Leu Leu Slu Slu Tr Ala Slu Slu Slu Slu Slu Leu Leu Leu Leu Slu Slu Tr Ala Slu Slu Slu Slu Slu Slu Slu Leu Leu Leu Leu Slu Slu Tr Val Ala Glu Ile Pro Pro Slu Tr Ile Slu Slu </td <td>Lys</td> <td></td> <td></td> <td>Arg</td> <td>Gln</td> <td>Leu</td> <td></td> <td>Ala</td> <td>Ile</td> <td>Pro</td> <td>Asp</td> <td></td> <td>Thr</td> <td>Val</td> <td>Tyr</td> <td></td> <td></td>	Lys			Arg	Gln	Leu		Ala	Ile	Pro	Asp		Thr	Val	Tyr		
1820 1825 1830 Ala Glu Gly Glu Gly Ser Gly Ala Leu Leu Leu Leu Ser Tyr Ays Na Arg Th Ile Phe Phe Asn Thr Leu Ala Thr Ser Ays Na Arg Th Ile Phe Phe Asn Thr Leu Ala Thr Ser Aus Na Su Th Ile Phe Phe Asn Thr Thr Thr Thr Ser Aus Na Su Su Su Su Su Thr Thr Thr Thr Su Su Su Su Aus Na Su	Сув			Thr	Gly	Val		Ser	Ser	Met	His		Lys	Leu	Aap		
1835 1840 1845 Ays Yal Arg Thr Ile Phe Phe Asn Thr Leu Ala Thr Glu His Ser 111 1850 Arg Thr Ile Phe Phe Asn Thr Leu Ala Thr Glu His Ser 112 Glu Ala Glu Ile Val Ser Gly Thr Thr Pro Arg Met Leu 1880 Val Met Ala Lys Leu His Asp Asp Glu His Ser eu Pro Val Met Ala Lys Leu His Asp Asp Glu His Asp Asp Asn Val Ile eu Ass Ass Ser Ala Ser Glu Val Thr Asp Asp Asp Asp Ile Ile Pro Thr Asp Asp Asp Asp Ile Ile Pro Thr Glu Asp Ile Ile Asp Ile<	Glu			Trp	Glu	Phe		Ser	Phe	Lys	Thr		Val	Thr	Leu		
1850 1855 1860 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1111 1111 1111 1111 1111 1111 1111 1111	Ala		Gly	Glu	Gly	Ser		Ala	Leu	Leu	Leu		Gln	Гла	Tyr		
186518701875JeeuProValMetAlaLysLeuHisAspAspGlnIleAsnValIleJeeuAsnAsnSerAlaSerGlnValThrAspIleThrAsnProAlaJeeuAsnAsnSerAlaSerGlnValThrAspIleThrAsnProAlaJeeuAsnAsnSerAlaSerGlnLysSerArgIleProThrGlnValGluIlePhoThrAspGluAlaGluThrSerArgIleProThrGluValGluIleMetThrAspAlaGluThrThrGluAsnArgSerLysLysJeeuTyrGluAlaIleGlnGlnLeuIleValSerHisNaSerAspThrJeeuTyrGluAlaIleGlnGlnLeuIleValSerHisIleAspThrJeeuTyrGluAlaIleGlnGlnLeuIleValSerHisIleSerAspIleJeeuYarJeeuIleValValFeuAlaSerAspIleSerAspIleJeeuYarJeeuIleYar <t< td=""><td>Гла</td><td></td><td>Arg</td><td>Thr</td><td>Ile</td><td>Phe</td><td></td><td>Asn</td><td>Thr</td><td>Leu</td><td>Ala</td><td></td><td>Glu</td><td>His</td><td>Ser</td><td></td><td></td></t<>	Гла		Arg	Thr	Ile	Phe		Asn	Thr	Leu	Ala		Glu	His	Ser		
1880 1885 1890 1890 1890 1890 1890 1891 1899 Asn Ser Ala Ser Ala Ser Ala Ser Ala Ser Ala 1900 Val Asp Ala 1920 Val Asp Arg Ser Lys 1991 Thr Asp Ala Asp Ala Asp Ala Asp Ala 1900 Thr Asp Ala Asp Ala 1900 Thr Asp Ala Asp Ala 1900 Thr Asp Ala Asp Ala 1900 The Val Asp Ala 1900 The Val Asp Ala 1900 The Asp Ala 1900 The Val Asp Ala 1900 The Val Asp Ala 1900 The Asp Ala 1900	Ile		Ala	Glu	Ile	Val			Thr	Thr	Thr		Arg	Met	Leu		
189519001905CrpPheThrAspGlnLysSerArgIleProThrGlnValGluIle1910ThrAspGlnLysSerArgIleProThrGlnValGluIle1920ThrMetAspAlaGluThrFhrGluAspArgSerLys1925GluAlaIleGlnGlnGlnLeuIleValSerHisHis1leAspThrArgValLeuLysIleValIleIleLysValPreLeuSerAspIleArgValLeuLysIleValIleLysValPreLeuSerAspIleArgValLeuLysIleNsAspHisLeuAspThrIleArgValLeuLeuTrpLeuAspAspHisLeuAspIleThrSerAspIleFor1970LeuLeuTrpLeuAspAspHisLeuAspLeuProIleSerSerProIlpopSerGlyTryLeuIleLysProIleThrSerSerProIlpopLysSerSer1985TryLeuIleTrySerSerPro	Leu			Met	Ala	Lys		His	Asp	Asp	Gln			Val	Ile		
191019151920MetAspAlaGluThrGluAsnIleAsnArgArgSerLysMeuTyrGluAlaIleGlnGlnGluAlaIleGlnGlnHeuIleValSerHisIleAspThrArgValLeuLysIleGluIleGluIleLusValFreIleAspThrArgValLeuLysIleJieJieJieJieJieSerAspIleArgGlyLeuLeuTrpLeuAspAspHisLeuAlaProIleSerGlyTyrLeuIleLysProIleThrSerSerProIysSerSerSerGlyTyrLeuIleLysProIleThrSerSerProIysSerSerSerGlyTyrLeuIleLysProIleThrSerSerProIysSerSerSerGlyTyrLeuIleLysProIleThrSerSerProIysSerSerSerGlyTyrLeuIleLysProIleThrSerSerProIysSerSerSerGlyLysLysIleThrSerSerPro	Leu		Asn	Ser	Ala	Ser		Val	Thr	Asp	Ile		Asn	Pro	Ala		
192519301935LeuTyrGluAlaIleGlnGlnLeuIleValSerHisIleAspThr1940YalLeuLysIleValFeLeuSerAspThr1950ArgValLeuLysIleValFeLeuSerAspIleIleLysValPheLeuSerAspIleSluGlyLeuLeuTrpLeuAspAspHisLeuAlaProLeuPheGly1970SerGlyTyrLeuIleLysProIleThrSerProLysSerSer198519901990199519951995SerS	Trp			Asp	Gln	Lys			Ile	Pro	Thr			Glu	Ile		
194019451950Arg Val Leu Lys Ile Val Ile 1960Ile Lys Val Phe Leu Ser Asp Ile 1965Stu Gly Leu Leu Trp Leu Asn Asp His Leu Ala Pro Leu Phe Gly 19701970Ser Gly Tyr Leu Ile Lys Pro Ile Thr Ser Ser Pro Lys Ser Ser 19851980	Met			Asp	Ala				Glu	Asn	Ile			Ser	Lys		
195519601965Slu Gly Leu Leu Trp Leu Asn 1975Asp His Leu Ala Pro Leu Phe Gly 1970Ser Gly Tyr Leu Ile Lys Pro Ile Thr Ser Ser Pro Lys Ser Ser 19851990	Leu			Ala	Ile	Gln		Leu	Ile	Val	Ser		Ile	Asp	Thr		
197019751980Ser Gly Tyr Leu Ile Lys Pro Ile Thr Ser Ser Pro Lys Ser Ser198519901995	Arg			Lys	Ile	Val			Lys	Val	Phe		Ser	Asp	Ile		
1985 1990 1995	Glu			Leu	Trp	Leu		Asp	His	Leu	Ala		Leu	Phe	Gly		
Slu Trp Tyr Leu Cys Leu Ser Asn Phe Leu Ser Ala Ser Arg Arg	Ser			Leu	Ile	Lys			Thr	Ser	Ser			Ser	Ser		
	Glu	Trp	Tyr	Leu	Cys	Leu	Ser	Asn	Phe	Leu	Ser	Ala	Ser	Arg	Arg		

Val Glu Ala Asp Tyr His LysIleLeu Thr Ala GlyLeuSer Val Gln 20 20 25 25 25 30 30 30 30 30 25 30 30 30 31 35 31 32 30 30 30 35 31 32 31 31 31 31 35 32 31 32 31 31 35 32 31 32 31 31 35 32 31 32 31 31 35 32 31 32 31 31 35 32 31 31 31 31 35 32 31 31 31 31 35 32 31 31 31 31 35 32 31 32 31 31 35 32 31 32 31 31 35 32 31 32 31 31 35 32 31 32 32 31 35 32 31 32 32 31 35 32 31 32 32 32 32 32 32 32 32 32 33 32 32 32 32 32 34 32 32 32 32 32 34 32 32 32 32 32 34 32 32 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>- C</th><th>on</th><th>.c 1r.</th><th>luec</th><th>1</th></t<>												- C	on	.c 1r.	luec	1
2015 2020 2025 la Leu Arg Leu Ghn Val Gin Arg Ser Ser Tyr Trp Leu Ser His 2040 Ser Yur Yul Asn 2050 seu Val Gin Tyr Ala Ap Ile Asn Leu His Leu Ser Tyr Val Asn 2056 Ser Yur Val Asn 2055 seu Gly Phe Pro Ser Leu Glu Lys Val Leu Tyr His 2070 Arg Tyr Asn 2065 seu Val Asp Ser Arg Lys Gly Pro Leu Val Ser Ile Leu Tyr His 2080 2080 seu Thr His Leu Gln Ala Glu Ile Arg Glu Leu Val Ser Ile Leu Tyr His 2090 2080 seu Gln Gln Arg Gln Ser Arg Tr Gln Thr Tyr His Phe Ile Lys 2100 2115 sen Gln Gln Arg Gln Ser Arg The Jur Leu Val Asn Asp Tyr Leu Lys 2120 2125 sen Gln Leu Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2135 2140 sen Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2155 2160 sen Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2155 2160 sen Tyr His Ile Arg Asp Cys Ser Cys Glu Asp Arg Phe Leu Ile 2165 2170 sen Tyr Leu Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2190 2100 sen Ala 2210 2200 2200 sen Ala 2210 2200 200 sen Ala 2210 220	_	2000	•	_	_	_	200	5	_	_	_	201	10	_	_	_
2030 2035 2040 eeu Val Gin Tyr Ala Asp Ile Asn Leu His Leu Ser Tyr Val Asn 2055 2055 Tyr Val Asn 2055 eeu Gly Phe Pro Ser Leu Glu Lys Val Leu Tyr His Arg Tyr Asn 2065 2075 2075 eeu Val Asp Ser Arg Lys Gly 2080 Pro Leu Val Ser Ile Leu Tyr His 2085 2080 eeu Thr His Leu Gln Ala Glu Ile Arg Glu Leu Val Cys Asp Tyr 2095 2080 2080 eeu Thr His Leu Gln Ala Glu Ile Arg Glu Leu Val Cys Asp Tyr 2095 2080 2010 san Gln Gln Arg Gln Ser Arg Thr Gln Thr Tyr His Phe Ile Lys 2115 2110 2110 san Gln Gln Arg Gly Arg Ile Thr Lys Leu Val Asn Asp Tyr Leu Lys 2120 2120 2130 the Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2115 2160 2160 clu Leu Arg Thr Leu Pro Asp Leu Ile Asn Val Cys Asn Arg 2155 2160 2175 clu Glu Leu Arg Thr Leu Pro Asp Leu Ile Asn Val Cys Asn Arg 2165 2170 2160 clu Thr Leu Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2180 2190 2100 clu Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2195 2200 220 2205 clu Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2115 2215 2210 2210 2210 2210 > SEQ ID NO 3 2211 > NURKKY: misc.feature	Arg			Glı	n Gly	/ His			Суз	Met	Glr			Ile	Gln	Thr
2045 2050 2055 eeu Gly Phe Pro Ser Leu Glu Lys Val Leu Tyr His Arg Tyr Asn 2060 2070 Arg Tyr Asn 2070 Arg Tyr Lys Gly Pro Leu Val Ser Ile Leu Tyr His 2070 Arg Tyr Leu Gln Ala Glu Ile Arg Glu Leu Val Cys Asp Tyr 2095 Arg Gln Arg Gln Ser Arg Thr Gln Thr Tyr His Phe Ile Lys 2105 Arg Gln Arg Gln Ser Arg Thr Gln Thr Tyr His Phe Ile Lys 2105 Arg Gly Arg Ile Thr Lys Leu Val Asn Arg Tyr Leu Lys 2120 2125 2125 Arg Thr Gln Arg Cys Leu Trp Gln 2135 Arg Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2150 Arg Thr Leu Pro Asp Leu Ile Asn Val Cys Asn Arg 2150 Arg Thr Leu Pro Asp Leu Ile Asn Val Cys Asn Arg 2150 Arg Thr Leu Tr Arg Met Gln Asp Ser Glu Ala Lys Leu 2105 Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2105 SEQ ID NO 3 211> LENGTH: 739 212> TPET PRT 212> ORGANISM: Bundibugyo ebolavirus 220> FEATURE: 221> NAME/KEY: misc_feature 221> NAME/KEY: misc_feature 221> NAME/KEY: misc feature 221> ANME/KEY: misc feature 2222 ANG Arg Gln Arg Ile Ile Pro Val Tyr Gln Ile Ser Asn 40 45 46 47 47 48 49 49 49 49 49 49 49 49 49 40 40 40 41 41 40 41 40 41 41 41 41 41	Ala			l Lei	u Glr	n Val			Ser	Sei	Tyr			Leu	Ser	His
2060 2065 2070 2070 Leu Val Asp Ser Arg Lys Gly Pro Leu Val Ser Ile Leu Tyr His 2075 2090 2000 2000 2000 2000 2000 2000 200	Leu			n Ty:	r Ala	a Asp			Leu	l His	; Leu			Tyr	Val	Asn
2075 2085 2075 2080 2085 Leu Thr His Leu Gln Ala Glu Ile Arg Glu Leu Val Cys Asp Tyr 2090 2000 2010 2010 2010 2010 2010 2010	Leu			e Pro	o Sei	: Leu			Val	. Leu	ı Tyr			Arg	Tyr	Asn
2090 2095 2100 2100 2100 2100 2100 2100 2100 210	Leu) Se:	r Arç	g Lya			Leu	ı Val	. Ser			Leu	Tyr	His
2105 2110 2115 The Thr Lys Gly Arg Ile Thr Lys Leu Val Asn Asp Tyr Leu Lys 2120 Phe Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2135 2130 2145 Phe Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2145 2145 2150 2150 2155 2120 2155 Phe Tyr His Ile Arg Asp Cys Ser Cys Glu Asp Arg Phe Leu Ile 2175 2165 2165 2170 2175 2175 2161 Thr Leu Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2180 Phe Tyr His Ile Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2195 2100 SEQ ID NO 3 211> LENGTH: 739 2212> TYPE: PRT 213> ORGANISM: Bundibugyo ebolavirus 2200 Feature: 221> NAME/KEY: misc_feature 2220> THER INFORMATION: Bundibugyo ebolavirus NP viral protein 400> SEQUENCE: 3 Tet Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 15 210 algu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 210 algu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 210 algu Ala Asp Tyr His Lys Ile Leu Thr Ala Glu Ala Cly Val 5 20 feature 40 210 algu Ala Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 6 210 algu Ala Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 80 210 algu Ala Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 80 210 algu Ala Asp Tyr His Lys Ile Leu Thr Ala Glu Ala Gly Val 50 211 algu Ala Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 80 212 algu Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 213 algu Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 214 algu Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 215 algo Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu	Leu			Lei	u Glr	ı Ala			e Arg	g Glu	ı Leu			Сув	Asp	Tyr
2120 2125 2130 Phe Tyr Leu Val Val Gln Ala Leu Lys His Asn Cys Leu Trp Gln 2135 2140 Glu Leu Arg Thr Leu Pro Asp Leu Ile Asn Val Cys Asn Arg 2150 Phe Tyr His Ile Arg Asp Cys Ser Cys Glu Asp Arg Phe Leu Ile 2175 Phe Tyr His Ile Arg Asp Cys Ser Cys Glu Asp Arg Phe Leu Ile 2176 2180 Curve Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2190 2180 Curve Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2190 2190 Ash Cys Asn Gly Ile 2100 2100 SEQ ID NO 3 2210 SEQ ID NO 3 2210 SEQ ID NO 3 2210 SEQ ID NO 3 2212 STYPE: PRT 2213 ORGANISM: Bundibugyo ebolavirus 2200 FEATURE: 221 NAME/KEY: misc_feature 223 OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 400 SEQUENCE: 3 Pet Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 15 Yal Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 30 31 Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 32 40 40 40 45 40 40 45 40 45 40 45 40 40 45 40 40 40 45 40 40 40 40 40 40 40 40 40 40	Asn			n Arg	g Glr	n Ser			Glr	1 Thr	Tyr			Phe	Ile	Гла
213521402145Slu Glu Leu Arg Thr Leu Pro 2155Asp Leu Ile Asn Val 2160Cys Asn Arg 2160Che Tyr His Ile Arg Asp Cys 2165Ser Cys Glu Asp Arg 2170Phe Leu Ile 2175Sln Thr Leu Tyr Leu Thr Arg 2185Met Gln Asp Ser Glu Ala Lys Leu 21802190Set Glu Arg Leu Thr Gly Phe 2195Leu Gly Leu Tyr Pro 2200Asn Gly Ile 2205Set Glu Arg Leu Thr Gly Phe 2100Leu Gly Leu Tyr Pro 2205Asn Gly Ile 2205Set Glu Arg Leu Thr Gly Phe 2100Leu Gly Leu Tyr Pro 2205Asn Gly Ile 2205Set Ala 2210SEQ ID NO 3 2212> 211> 212> 212> 212> 212> 212> 212> 212> 212> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 220> 221> 221> 221> 220> 221> 221> 221> 221> 220> 221> 221>	Thr			Gl	y Arç	g Il∈			Leu	u Val	. Asn			Tyr	Leu	Lys
2150 2155 2160 Phe Tyr His Ile Arg Asp Cys Ser Cys Glu Asp Arg Phe Leu Ile 2165 2170 2175 Phe Tyr His Ile Arg Asp Cys Ser Cys Glu Asp Arg Phe Leu Ile 2165 2170 2175 Phe Leu Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2180 2190 2190 2190 2190 Phe Call Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2195 2200 2205 Phe Call Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2195 2200 2205 Phe Call Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2195 2200 2205 Phe Call Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2200 2205 Phe Call Arg Tyr Pro Asn Gly Ile 2210 2205 Phe Call No 3 2211 LENGTH: 739 2212 TYPE: PRT 2213 ORGANISM: Bundibugyo ebolavirus 2200 FEATURE: 2213 ORGANISM: Bundibugyo ebolavirus NP viral protein 2200 FEATURE: 2214 NAME/KEY: misc_feature 2223 OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 2200 SEQUENCE: 3 Phe Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 10 15 Yal Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 20 Sin Gly Ile Val Arg Gln Arg Ile Ile Pro Val Tyr Gln Ile Ser Asn 35 Acu Glu Glu Val Cys Gln Leu Ile Ile Gln Ala Phe Glu Ala Gly Val 50 Sin Phe Gln Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 70 75 Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 App Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu	Phe			ιVa:	l Val	l Glr			. Lуз	Hi:	s Asn			Leu	Trp	Gln
2165 2170 2175 Sin Thr Leu Tyr Leu Thr Arg Met Gln Asp Ser Glu Ala Lys Leu 2180 2190 2190 2200 2205 Asn Ala 2210 SEQ ID NO 3 211> LENGTH: 739 212> TYPE: PRT 213> ORGANISM: Bundibugyo ebolavirus 220> FEATURE: 221> NAME/KEY: misc_feature 222> OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 400> SEQUENCE: 3 Met Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 10 15 Yal Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 30 Sin Gly Ile Val Arg Gln Arg Ile Ile Pro Val Tyr Gln Ile Ser Asn 40 40 45 45 40 45 45 45 40 45 45 45 45 45 45 45 45 45 45	Glu			ı Arg	g Thi	r Leu) Leu	l Ile	e Asn			Cys	Asn	Arg
2180 2185 2190 let Glu Arg Leu Thr Gly Phe Leu Gly Leu Tyr Pro Asn Gly Ile 2195 2200 2205 asn Ala 2210 2210 SEQ ID NO 3 2211 > LENGTH: 739 2212 TYPE: PRT 233 > ORGANISM: Bundibugyo ebolavirus 220 > FEATURE: 221 > NAME/KEY: misc_feature 222 > OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 200 > SEQUENCE: 3 let Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 10 15 /al Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 Sequence: 3 let Glu Glu Val Cys Gln Leu Ile Ile Gln Ala Phe Glu Ala Gly Val 50 60 60 10 10 11 12 12 10 10 11 11 12 12 10 10 11 12 10 11 12 10 12 10 10 11 11 11 12 12 10 11 12 12 12 12 13 14 15 15 15 16 16 17 10 18 19 10 10 10 11 10 11 10 11 10 11 10 11 10 11 11	Phe			; Ile	e Arç	d yab			Суа	Glu	ı Asp			Phe	Leu	Ile
2195 2200 2205 an Ala 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2212 2210 2212 2212 2213 2212 2213 2215 2205 200 200	Gln			ι Ту:	r Leu	ı Thr			Glr	ı Asp) Ser			Ala	Lys	Leu
2210 210> SEQ ID NO 3 211> LEMGTH: 739 212> TYPE: PRT 213> ORGANISM: Bundibugyo ebolavirus 220> FEATURE: 221> NAME/KEY: misc_feature 222> OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 400> SEQUENCE: 3 Met Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 10 15 Al Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 25 10 10 25 Al Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 25 20 Al Glu Ile Val Arg Gln Arg Ile Ile Pro Val Tyr Gln Ile Ser Asn 35 40 40 Al Glu Val Cys Gln Leu Ile Ile Gln Ala Phe Glu Ala Gly Val 50 20 Alsp Phe Gln Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 80 Also Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 80 Also Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu	Met			j Lei	u Thi	c Gly			Gly	r Leu	ı Tyr			Asn	Gly	Ile
211> LENGTH: 739 212> TYPE: PRT 213> ORGANISM: Bundibugyo ebolavirus 220> FEATURE: 221> NAME/KEY: misc_feature 222> OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 400> SEQUENCE: 3 Met Asp Pro Arg Pro Ile Arg Thr Trp Met Met His Asn Thr Ser Glu 10 15 7al Glu Ala Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln 20 20 20 20 20 20 20 20 20 20	Asn		i													
213> ORGANISM: Bundibugyo ebolavirus 220> FEATURE: 221> NAME/KEY: misc_feature 2223> OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 223> OTHER INFORMATION: Bundibugyo ebolavirus NP viral protein 224 225 236 240 257 241 25 257 241 257 257 257 257 257 257 257 257	<21	1> LE	NGTH	I: 73												
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	<213 <220 <223	3> OR 0> FE 1> NA	GANI ATUR ME/K	SM: E: CEY:	miso	c_fea	ture									
The Asp Pro Arg Pro I le Arg Thr Trp Met Met His Asn Thr Ser Glu 15 16 17 16 16 17 18 19 19 19 19 10 10 10 10 10 10 10 11 15 10 10 11 15 10 10 11 15 10 11 15 10 11 15 10 11 15 10 10 11 11 11 11 11 11 11 11						FION :	Bund	dibug	iyo e	bola	viru	ls NH	2 v	iral	. pro	otein
5 10 15 x_{a} Ω_{a} Δ_{sp} Tyr His Lys Ile Ihr Ala Gly Isr Gly Isr Gly Isr Isr Isr Isr Isr Gly Isr Is			-			Ile	Arq '	Thr T	'rp M	let M	let H	lis A	Asn	Thr	: Sei	r Glu
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1		5												
35 40 45 A gen Glu Glu Val Cys Gln Leu Ile Ile Gln Ala Phe Glu Ala Gly Val 50 5 70 70 75 70 75 70 75 70 75 80 Asp Phe Gln Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 70 75 80 Asp Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 90 95 90 Sys Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu	Val	Glu	Ala		Tyr	His	Lys :			'hr A	Ala G	ly I	Leu		Va.	l Gln
50 55 60 Asp Phe Gln Asp Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 75 80 15 Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 90 90 95 vys Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu 10 10 10 10	Gln			Val	Arg	Gln	-		le F	ro V	/al T	-		Ile	e Sei	r Asn
5 70 75 80 Nis Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 85 90 95 Nys Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu	Leu		Glu	Val	САз	Gln		Ile I	le G	ln A			Jlu	Ala	ı Gly	7 Val
85 90 95 .ys Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Met Lys Lys Lys Glu	Asp 65	Phe	Gln	Asp	Ser		Aap :	Ser F	he I			let I	Leu	Суа	: Lei	
	His	Ala	Tyr	Gln		Asp	Tyr 1	Lys G			Jeu G	lu S	Ser	Asr		a Val
	Lys	Tyr	Leu		Gly	His	Gly 1			he C	Slu M	let I	Lys			3 Glu

	cont	inued	
-	COILC	THUCH	

											-	con	cin	uea		
Gly	Val	Lys 115	Arg	Leu	Glu	Glu	Leu 120	Leu	Pro	Ala	Ala	Ser 125	Ser	Gly	Lys	
Asn	Ile 130	Lys	Arg	Thr	Leu	Ala 135	Ala	Met	Pro	Glu	Glu 140	Glu	Thr	Thr	Glu	
Ala 145	Asn	Ala	Gly	Gln	Phe 150	Leu	Ser	Phe	Ala	Ser 155	Leu	Phe	Leu	Pro	Lys 160	
Leu	Val	Val	Gly	Glu 165	Lys	Ala	Cys	Leu	Glu 170	Lys	Val	Gln	Arg	Gln 175	Ile	
Gln	Val	His	Ala 180	Glu	Gln	Gly	Leu	Ile 185	Gln	Tyr	Pro	Thr	Ser 190	Trp	Gln	
Ser	Val	Gly 195	His	Met	Met	Val	Ile 200	Phe	Arg	Leu	Met	Arg 205	Thr	Asn	Phe	
Leu	Ile 210	Lys	Phe	Leu	Leu	Ile 215	His	Gln	Gly	Met	His 220	Met	Val	Ala	Gly	
His 225	Asp	Ala	Asn	Aap	Ala 230	Val	Ile	Ala	Asn	Ser 235	Val	Ala	Gln	Ala	Arg 240	
Phe	Ser	Gly	Leu	Leu 245	Ile	Val	Lys	Thr	Val 250	Leu	Asp	His	Ile	Leu 255	Gln	
ГЛа	Thr	Glu	His 260	Gly	Val	Arg	Leu	His 265	Pro	Leu	Ala	Arg	Thr 270	Ala	Lys	
Val	Гла	Asn 275	Glu	Val	Ser	Ser	Phe 280	Гла	Ala	Ala	Leu	Ala 285	Ser	Leu	Ala	
Gln	His 290	Gly	Glu	Tyr	Ala	Pro 295	Phe	Ala	Arg	Leu	Leu 300	Asn	Leu	Ser	Gly	
Val 305	Asn	Asn	Leu	Glu	His 310	Gly	Leu	Phe	Pro	Gln 315	Leu	Ser	Ala	Ile	Ala 320	
Leu	Gly	Val	Ala	Thr 325	Ala	His	Gly	Ser	Thr 330	Leu	Ala	Gly	Val	Asn 335	Val	
Gly	Glu	Gln	Tyr 340	Gln	Gln	Leu	Arg	Glu 345	Ala	Ala	Thr	Glu	Ala 350	Glu	Lys	
Gln	Leu	Gln 355	Lys	Tyr	Ala	Glu	Ser 360	Arg	Glu	Leu	Asp	His 365	Leu	Gly	Leu	
Asp	Asp 370	Gln	Glu	Lys	Lys	Ile 375	Leu	Lys	Aab	Phe	His 380	Gln	Lys	Lys	Asn	
Glu 385	Ile	Ser	Phe	Gln	Gln 390	Thr	Thr	Ala	Met	Val 395	Thr	Leu	Arg	Lys	Glu 400	
Arg	Leu	Ala	Lys	Leu 405	Thr	Glu	Ala	Ile	Thr 410	Ser	Thr	Ser	Ile	Leu 415	Гла	
Thr	Gly	Arg	Arg 420		Asp	Asp	Asp	Asn 425	Asp	Ile	Pro	Phe	Pro 430	Gly	Pro	
Ile	Asn	Asp 435	Asn	Glu	Asn	Ser	Gly 440	Gln	Asn	Asp	Asp	Asp 445	Pro	Thr	Asp	
Ser	Gln 450	Asp	Thr	Thr	Ile	Pro 455	Asp	Val	Ile	Ile	Asp 460	Pro	Asn	Asp	Gly	
Gly 465	Tyr	Asn	Asn	Tyr	Ser 470	Asp	Tyr	Ala	Asn	Asp 475	Ala	Ala	Ser	Ala	Pro 480	
Asp	Asp	Leu	Val	Leu 485	Phe	Asp	Leu	Glu	Asp 490	Glu	Asp	Asp	Ala	Asp 495	Asn	
Pro	Ala	Gln	Asn 500	Thr	Pro	Glu	Lys	Asn 505	Asp	Arg	Pro	Ala	Thr 510	Thr	Lys	
Leu	Arg	Asn	Gly	Gln	Asp	Gln	Asp	Gly	Asn	Gln	Gly	Glu	Thr	Ala	Ser	

-continued

		515					520					525			
Pro	Arg 530	Val	Ala	Pro	Asn	Gln 535	Tyr	Arg	Asp	Lys	Pro 540	Met	Pro	Gln	Val
Gln 545	Asp	Arg	Ser	Glu	Asn 550	His	Asp	Gln	Thr	Leu 555	Gln	Thr	Gln	Ser	Arg 560
Val	Leu	Thr	Pro	Ile 565	Ser	Glu	Glu	Ala	Asp 570	Pro	Ser	Asp	His	Asn 575	Asp
Gly	Aap	Asn	Glu 580	Ser	Ile	Pro	Pro	Leu 585	Glu	Ser	Asp	Asp	Glu 590	Gly	Ser
Thr	Asp	Thr 595	Thr	Ala	Ala	Glu	Thr 600	Lys	Pro	Ala	Thr	Ala 605	Pro	Pro	Ala
Pro	Val 610	Tyr	Arg	Ser	Ile	Ser 615	Val	Asp	Asp	Ser	Val 620	Pro	Ser	Glu	Asn
Ile 625	Pro	Ala	Gln	Ser	Asn 630	Gln	Thr	Asn	Asn	Glu 635	Asp	Asn	Val	Arg	Asn 640
Asn	Ala	Gln	Ser	Glu 645	Gln	Ser	Ile	Ala	Glu 650	Met	Tyr	Gln	His	Ile 655	Leu
ГЛЗ	Thr	Gln	Gly 660	Pro	Phe	Asp	Ala	Ile 665	Leu	Tyr	Tyr	His	Met 670	Met	Lys
Glu	Glu	Pro 675	Ile	Ile	Phe	Ser	Thr 680	Ser	Asp	Gly	ГЛа	Glu 685	Tyr	Thr	Tyr
Pro	Asp 690	Ser	Leu	Glu	Asp	Glu 695	Tyr	Pro	Pro	Trp	Leu 700	Ser	Glu	Lys	Glu
Ala 705	Met	Asn	Glu	Asp	Asn 710	Arg	Phe	Ile	Thr	Met 715	Asp	Gly	Gln	Gln	Phe 720
Tyr	Trp	Pro	Val	Met 725	Asn	His	Arg	Asn	Lys 730	Phe	Met	Ala	Ile	Leu 735	Gln
His	His	Arg													
<213 <213 <213 <220 <223	0> SI 1> LI 2> TY 3> OF 0> FI 1> NZ 3> OY	ENGTH IPE : RGANI EATUF AME / H	H: 3' PRT ISM: RE: KEY:	73 Bund misd	c_fea	ature	è			lavi	rus :	SGP .	vira	l pro	otein
)> SI													-	
Met 1	Val	Thr	Ser	Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Glu	Arg	Phe	Arg 15	Lys
Thr	Ser	Phe	Phe 20	Val	Trp	Val	Ile	Ile 25	Leu	Phe	His	Гла	Val 30	Phe	Pro
Ile	Pro	Leu 35	Gly	Val	Val	His	Asn 40	Asn	Thr	Leu	Gln	Val 45	Ser	Asp	Ile
Asp	Lys 50	Leu	Val	Суз	Arg	Asp 55	Lys	Leu	Ser	Ser	Thr 60	Ser	Gln	Leu	Lys
Ser 65	Val	Gly	Leu	Asn	Leu 70	Glu	Gly	Asn	Gly	Val 75	Ala	Thr	Asp	Val	Pro 80
Thr	Ala	Thr	Гла	Arg 85	Trp	Gly	Phe	Arg	Ala 90	Gly	Val	Pro	Pro	Lys 95	Val
Val	Asn	Tyr	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Сув	Tyr	Asn 110	Leu	Азр
Ile	Lys	Lys	Ala	Asp	Gly	Ser	Glu	Суз	Leu	Pro	Glu	Ala	Pro	Glu	Gly

											_	con	tin	ued	
		115					120					125			
Val	Arg 130	Gly	Phe	Pro	Arg	Cys 135	Arg	Tyr	Val	His	Lys 140	Val	Ser	Gly	Thr
Gly 145	Pro	Сув	Pro	Glu	Gly 150	Tyr	Ala	Phe	His	Lys 155	Glu	Gly	Ala	Phe	Phe 160
Leu	Tyr	Asp	Arg	Leu 165		Ser	Thr	Ile	Ile 170	Tyr	Arg	Ser	Thr	Thr 175	Phe
Ser	Glu	Gly	Val 180	Val	Ala	Phe	Leu	Ile 185	Leu	Pro	Glu	Thr	Lys 190	Lys	Asp
Phe	Phe	Gln 195	Ser	Pro	Pro	Leu	His 200	Glu	Pro	Ala	Asn	Met 205	Thr	Thr	Asp
Pro	Ser 210	Ser	Tyr	Tyr	His	Thr 215	Val	Thr	Leu	Asn	Tyr 220	Val	Ala	Asp	Asn
Phe 225	Gly	Thr	Asn	Met	Thr 230	Asn	Phe	Leu	Phe	Gln 235	Val	Asp	His	Leu	Thr 240
Tyr	Val	Gln	Leu	Glu 245		Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Val	Gln 255	Leu
Asn	Glu	Thr	Ile 260	Tyr	Thr	Asn	Gly	Arg 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Thr
Leu	Ile	Trp 275	Lys	Val	Asn	Pro	Thr 280	Val	Asp	Thr	Gly	Val 285	Gly	Glu	Trp
Ala	Phe 290	Trp	Glu	Asn	Lys	Lys 295	Thr	Ser	Gln	Lys	Pro 300	Phe	Gln	Val	Lys
Ser 305	Сүз	Leu	Ser	Tyr	Leu 310	Tyr	Gln	Glu	Pro	Arg 315	Ile	Gln	Ala	Ala	Thr 320
Arg	Arg	Arg	Arg	Ser 325		Pro	Pro	Ala	Ser 330	Pro	Thr	Thr	Lys	Pro 335	Pro
Arg	Thr	Thr	Lys 340	Thr	Trp	Phe	Gln	Arg 345	Ile	Pro	Leu	Gln	Trp 350	Phe	Lys
Суз	Glu	Thr 355	Ser	Arg	Gly	LÀa	Thr 360	Gln	Суз	Arg	Pro	His 365	Pro	Gln	Thr
Gln	Ser 370	Pro	Gln	Leu											
<21 <21 <21 <22 <22	0> SI 1> LI 2> T 3> OF 0> FF 1> NA 3> O	ENGTH (PE : RGANI EATUH AME / H	H: 2! PRT [SM: RE: (EY:	51 Bun mis	c_fea	ature	e			lavi:	rus '	VP24	vira	al pi	rotei
<40	0> SI	equei	ICE :	5											
Met 1	Ala	Lys	Ala	Thr 5	Gly	Arg	Tyr	Asn	Leu 10	Val	Ser	Pro	Lys	Lys 15	Asp
Leu	Glu	Arg	Gly 20	Leu	Val	Leu	Ser	Asp 25	Leu	Сүз	Thr	Phe	Leu 30	Val	Asp
Gln	Thr	Ile 35	Gln	Gly	Trp	Arg	Val 40	Thr	Trp	Val	Gly	Ile 45	Glu	Phe	Asp
Ile	Ala 50	Gln	Lys	Gly	Met	Ala 55	Leu	Leu	His	Arg	Leu 60	Lys	Thr	Ala	Asp
Phe 65	Ala	Pro	Ala	Trp	Ser 70	Met	Thr	Arg	Asn	Leu 75	Phe	Pro	His	Leu	Phe 80

				-
-con	t.	in	11€	ed -

												0011	tin		
Gln	Asn	Ser	Asn	Ser 85	Thr	Ile	Glu	Ser	Pro 90	Leu	Trp	Ala	Leu	Arg 95	/al
Ile	Leu	Ala	Ala 100	Gly	Ile	Gln	Asp	Gln 105	Leu	Ile	Asp	Gln	Ser 110	Leu	Val
Glu	Pro	Leu 115	Ala	Gly	Ala	Leu	Ser 120	Leu	Val	Ser	Asp	Trp 125	Leu	Leu	Fhr
Thr	Asn 130	Thr	Asn	His	Phe	Gln 135	Met	Arg	Thr	Gln	His 140	Ala	Гла	Glu	Sln
Leu 145	Ser	Leu	Lys	Met	Leu 150	Ser	Leu	Val	Arg	Ser 155	Asn	Ile	Leu	Lys	Phe 160
Ile	Ser	Gln	Leu	Asp 165	Ala	Leu	His	Val	Val 170	Asn	Tyr	Asn	Gly	Leu 175	Leu
Ser	Ser	Ile	Glu 180	Ile	Gly	Thr	Arg	Asn 185	His	Thr	Ile	Ile	Ile 190	Thr	Arg
Thr	Asn	Met 195	Gly	Phe	Leu	Val	Glu 200	Leu	Gln	Glu	Pro	Asp 205	Lys	Ser	Ala
Met	Asn 210	Gln	Гла	Гла	Pro	Gly 215	Pro	Val	Lys	Phe	Ser 220	Leu	Leu	His	Slu
Ser 225	Thr	Phe	Lys	Ala	Leu 230	Ile	Lys	Lys	Pro	Ala 235	Thr	Lys	Met	Gln	Ala 240
	Ile	Leu	Glu	Phe 245	Asn	Ser	Ser	Leu	Ala 250	Ile					
<21) <21] <21] <21] <22] <22]	1> LH 2> TY 3> OH 0> FH 1> NA	EQ II ENGTH YPE: RGANI EATUH AME/H THER	H: 28 PRT ISM: RE: KEY:	39 Bund miso	c_fea	ature	è			avi	าเส	7230	vir	ימ וי	stein
<21) <21: <21: <22: <22: <22:	1> LH 2> TY 3> OH 0> FH 1> NH 3> OY	ENGTH YPE : RGANI EATUF AME/H	H: 28 PRT ISM: RE: KEY: INFC	39 Bund misc DRMAT	c_fea	ature	è			lavii	rus N	JP30	vira	al pi	otein
<21) <21: <21: <22: <22: <22: <22: <40)	1 > LI 2 > TY 3 > OH 0 > FI 1 > NZ 3 > OY 3 > OY	ENGTH YPE: RGANI EATUH AME/H THER	H: 28 PRT ISM: RE: KEY: INFC NCE:	Bund misc DRMAT	c_fea FION	ature : Bui	e ndibu	ıgyo	ebol						
<21) <21: <21: <22: <22: <22: <22: <40) Met 1	1> LI 2> T 3> OF 0> FF 1> NA 3> O 0> SI Asp	ENGTH YPE: RGANI EATUH AME/H THER EQUEN	H: 28 PRT ISM: RE: KEY: INFC NCE: Phe	Bund misc DRMAT 6 His 5	c_fea FION Glu	ature : Bun Arg	e ndibu Gly	1gyo Arg	ebol Ser 10	Arg	Thr	Ile	Arg	Gln 15	Ser
<21: <21: <22: <22: <22: <40) Met 1 Ala	1> LH 2> TY 3> OH 0> FH 1> NA 3> OY 0> SH Asp Arg	ENGTH YPE: RGANI EATUH AME/H THER EQUEN Ser	H: 28 PRT ISM: RE: KEY: INFC NCE: Phe Gly 20	Bund misc DRMA 6 His 5 Pro	c_fea FION Glu Ser	Ature Bun Arg His	e ndibu Gly Gln	Arg Val 25	ebol Ser 10 Arg	Arg Thr	Thr Arg	Ile Ser	Arg Ser 30	Gln 15 Ser	Ser
<211 <21: <22: <222 <222 <222 <400 Met 1 Ala Asp	1 > LI 2 > T 3 > OF 0 > FF 1 > NA 3 > O 3 > O 0 > SF 0 > SF Asp Arg Ser	ENGTH YPE: RGANI EATUH AME/H THER EQUEN Ser Asp His	H: 28 PRT ISM: RE: (EY: INFC NCE: Phe Gly 20 Arg	Bund misc DRMAT 6 His 5 Pro Ser	c_fea TION Glu Ser Glu	Arg His Tyr	Gly Gly Gln His 40	lgyo Arg Val 25 Thr	ebol Ser 10 Arg Pro	Arg Thr Arg	Thr Arg Ser	Ile Ser Ser 45	Arg Ser 30 Ser	Gln 15 Ser Gln	Ser Arg Val
<211 <211 <212 <222 <222 <400 Met 1 Ala Asp Arg	<pre>1> LL 2> TY 3> OP 0> FF 1> NA 3> O? 0> SI Asp Arg Ser Val 50</pre>	ENGTH YPE: RGANI EATUH AME/H THER EQUEN Ser Asp His 35	H: 28 PRT ISM: RE: KEY: INFC VCE: Phe Gly 20 Arg Thr	Bund misc ORMAT 6 His 5 Pro Ser Val	Glu Glu Ser Glu Phe	Arg His Tyr His 55	Gly Gly Gln His 40 Arg	lgyo Arg Val 25 Thr Lys	ebol Ser 10 Arg Pro Arg	Arg Thr Arg Thr	Thr Arg Ser Asp 60	Ile Ser Ser 45 Ser	Arg Ser 30 Ser Leu	Gln 15 Ser Gln Thr	Ser Arg Val
<211 <21: <21: <22: <22: <22: <400 Met 1 Ala Asp Arg Pro 65	<pre>1> LH 2> TY 3> OD 0> FF 1> NA 3> O' 0> SF 0> SF Asp Arg Ser Val 50 Pro</pre>	ENGTH YPE: RGANI EATUI AME/J THER EQUEN Ser Asp His 35 Pro	H: 28 PRT ISM: TSM: CEY: INFC NCE: Phe Gly 20 Arg Thr Pro	Bund misc ORMAT 6 His 5 Pro Ser Val Lys	Glu Glu Ser Glu Phe Asp 70	Ature Bun Arg His Tyr His 55 Ile	gly Gly Gln His 40 Arg Cys	ugyo Arg Val 25 Thr Lys Pro	ebol Ser 10 Arg Pro Arg Thr	Arg Thr Arg Thr Leu 75	Thr Arg Ser Asp 60 Arg	Ile Ser Ser 45 Ser Lys	Arg Ser 30 Ser Leu Gly	Gln 15 Ser Gln Thr Phe	Ser Arg Val Val Jal
<211 <211 <221 <222 <222 <400 Met 1 Ala Asp Arg Pro 65 Cys	1> LH 2> TY 3> OD 0> FH 1> NN 3> O' 0> SI Asp Arg Ser Val 50 Pro Asp	ENGTH YPE: RGANI EATUI EATUI EATUI EATUI Ser Ser Asp His 35 Pro Ala	H: 28 PRT ISM: RE: RE: INFC NCE: Phe Gly 20 Arg Thr Pro Asn	Bund miscord DRMAT 6 His 5 Pro Ser Val Lys Phe 85	C_fea TION: Glu Ser Glu Phe Asp 70 Cys	Arg Arg His Tyr His 55 Ile Lys	Gly Gln His 40 Arg Cys Lys	lgyo Arg Val 25 Thr Lys Pro Asp	ebol Ser 10 Arg Pro Arg Thr His 90	Arg Thr Arg Thr Leu 75 Gln	Thr Arg Ser Asp 60 Arg Leu	Ile Ser Ser Ser Lys Glu	Arg Ser 30 Ser Leu Gly Ser	Gln 15 Ser Gln Thr Phe Leu 95	Ser Arg Val Val Leu So Thr
<211 <211 <221 <222 <222 <400 Met 1 Ala Asp Pro 65 Cys Asp	1> LF 2> TT 3> OF 1> NA 3> O 0> SF 1> NA 3> O 0> SF Asp Ser Val 50 Pro Asp Arg	ENGTH YPE: RGANJ AME/J THER EQUEN Ser Asp His 35 Pro Ala Ser	H: 28 PRT ISM: ZE: CEY: INFC NCE: Phe Gly 20 Arg Thr Pro Asn Leu 100	39 Bunc misc DRMA: 6 His 5 Pro Ser Val Lys Phe 85 Leu	Glu Glu Ser Glu Phe Asp 70 Cys Leu	Arg Arg His Tyr His 55 Ile Lys Leu	Gly Gln His 40 Arg Cys Lys Ile	Arg Val 25 Thr Lys Pro Asp Ala 105	ebol Ser 10 Arg Pro Arg Thr His 90 Arg	Arg Thr Arg Thr Leu 75 Gln Lys	Thr Arg Ser Asp 60 Arg Leu Thr	Ile Ser 45 Ser Lys Glu Cys	Arg Ser 30 Ser Leu Gly Ser Gly 110	Gln 15 Ser Gln Thr Phe Leu 95 Ser	Ser Arg Val Val So Fhr Leu
<21: <21: <22: <22: <22: <400 Met 1 Ala Asp Arg Pro 65 Cys Glu	1> LL 2> TT 3> TT 1> TT 3> O' 5> FF 1> NN 3> O' 5> SF Asp Arg 50 Pro Asp Arg Gln	ENGTH YPE: RGANI EATUUAME/HITHER Ser Asp His 35 Pro Ala Ser Glu Glu	H: 28 PRT ISM: ZE: KEY: INFC NCE: Phe Gly 20 Arg Thr Pro Asn Leu 100 Leu	Bunc miscord G His 5 Pro Ser Val Lys Phe 85 Leu Asn	Glu Ser Glu Ser Glu Phe Asp 70 Cys Leu Ile	Ature Bun Arg His Tyr His 55 Ile Lys Leu Thr	Gly Gln His 40 Arg Cys Lys Ile Ala 120	lgyo Arg Val 25 Thr Lys Pro Asp Ala 105 Pro	ebol Ser 10 Arg Pro Arg Thr His 90 Arg Lys	Arg Thr Arg Thr Leu 75 Gln Lys Asp	Thr Arg Ser Asp 60 Arg Leu Thr Thr	Ile Ser 45 Ser Lys Glu Cys Arg 125	Arg Ser 30 Ser Leu Gly Ser Gly 110 Leu	Gln 15 Ser Gln Thr Phe Leu 95 Ser Ala	Ser Arg Jal Jal Jal Jal Jon Thr Leu Asn
<pre><210 <211 <211 <221 <222 <222 <222 <400 Met 1 Ala Asp Pro 65 Cys Glu Pro</pre>	<pre>1 > Li 2 > Ti 2 > Ti 3 > Oi 0 > FF 1 > NN 3 > Oi 0 > SI Asp Arg Ser Val 50 Pro Asp Arg Gln Ile 130</pre>	ENGTH YPE: RGANJ EATU AME//JAME// Ser Asp His 35 Pro Ala Ser Glu Gln 115	H: 28 PRT ISM: ZE: KEY: INFC NCE: Phe Gly 20 Arg Thr Pro Asn Leu 100 Leu Asp	Bund missor ORMA: 6 His 5 Pro Ser Val Lys Lys Leu Asn Asp	Glu Glu Ser Glu Phe Asp 70 Cys Leu Ile Phe	Arg His Tyr His 55 Ile Leu Thr Gln 135	Gly Gln His 40 Arg Cys Lys Ile Ala 120 Gln	Igyo Arg Val 25 Thr Lys Pro Ala 105 Pro Lys	ebol Ser 10 Arg Pro Arg Thr His 90 Arg Lys Asp	Arg Thr Arg Thr Leu 75 Gln Lys Asp Gly	Thr Arg Ser Asp 60 Arg Leu Thr Thr Thr Pro 140	Ile Ser Ser Lys Glu Cys Arg 125 Lys	Arg Ser Ser Leu Gly Ser Gly 110 Leu Ile	Gln Ser Gln Thr Phe Leu 95 Ser Ala Thr	Ser Arg Val Val So Chr Leu Asn
<210 <211 <211 <221 <222 <222 <400 Met 1 Ala Asp 65 Cys Glu Pro Glu Pro Leu 145	<pre>1> Li 2> TT 3> TT 3> O' 3> O' Asp Arg Ser Val 50 Pro Asp Arg Gln Ile 130 Thr</pre>	ENGTH YPE: EATUI AAME// THER EQUET Ser Asp His 35 Pro Ala Ser Glu Glu L15 Ala	H: 28 PRT ISM: ISM: ISM: RE: CEY: INFC OUCE: Phe Gly 20 Arg Thr Pro Asn Leu Leu Asp Leu	39 Bunc miss DRMA 6 His 5 Pro Ser Val Lys Lys Leu Asn Asp Glu	Glu Ser Glu Ser Glu Phe Asp 70 Cys Leu Ile Phe Thr 150	Arg His Tyr His 55 Ile Lys Leu Thr Gln 135 Ala	Gly Gln His 40 Cys Lys Ile Ala 120 Gln Glu	Igyo Arg Val 25 Thr Lys Pro Asp Ala 105 Pro Lys Tyr	ebol Ser 10 Arg Pro Arg Thr His 90 Arg Lys Asp Trp	Arg Thr Arg Thr Leu 75 Gln Lys Asp Gly Ser 155	Thr Arg Ser Asp 60 Arg Leu Thr Thr Thr Pro 140 Lys	Ile Ser 45 Ser Lys Glu Cys Arg 125 Lys Gln	Arg Ser Ser Leu Gly Ser Gly 110 Leu Ile Asp	Gln 15 Ser Gln Thr Phe Leu 95 Ser Ala Thr Ile	Ser Arg Zal Zal Jal Jal Seu Asn Seu

```
-continued
```

Met Thr Arg Lys Phe Ser Lys Ser Gln Leu Ser Leu Leu Cys Glu Ser 180 185 190 His Leu Arg Arg Glu Gly Leu Gly Gln Asp Gln Ser Glu Ser Val Leu 195 200 205 Glu Val Tyr Gln Arg Leu His Ser Asp Lys Gly Gly Asn Phe Glu Ala 220 210 215 Ala Leu Trp Gln Gln Trp Asp Arg Gln Ser Leu Ile Met Phe Ile Thr 235 240 225 230 Ala Phe Leu Asn Ile Ala Leu Gln Leu Pro Cys Glu Ser Ser Val 245 250 255 Val Ile Ser Gly Leu Arg Leu Leu Val Pro Gln Ser Glu Asp Thr Glu 260 265 270 Thr Ser Thr Tyr Thr Glu Thr Arg Ala Trp Ser Glu Glu Gly Gly Pro 275 280 285 His <210> SEQ ID NO 7 <211> LENGTH: 341 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Bundibugyo ebolavirus VP35 viral protein <400> SEQUENCE: 7
 Met
 Thr
 Ser
 Asn
 Arg
 Ala
 Arg
 Val
 Thr
 Tyr
 Asn
 Pro
 Pro
 Thr
 Thr

 1
 5
 10
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 10
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 Thr Gly Thr Arg Ser Cys Gly Pro Glu Leu Ser Gly Trp Ile Ser Glu 20 25 30 Gln Leu Met Thr Gly Lys Ile Pro Ile Thr Asp Ile Phe Asn Glu Ile 35 40 45 Glu Thr Leu Pro Ser Ile Ser Pro Ser Ile His Ser Lys Ile Lys Thr 50 55 60
 Pro
 Ser
 Val
 Gln
 Thr
 Asp
 Pro
 Asr
 Cys

 65
 70
 75
 80
 Asn His Asp Phe Ala Glu Val Val Lys Met Leu Thr Ser Leu Thr Leu 85 90 95 Val Val Gln Lys Gln Thr Leu Ala Thr Glu Ser Leu Glu Gln Arg Ile 100 105 110 Thr Asp Leu Glu Gly Ser Leu Lys Pro Val Ser Glu Ile Thr Lys Ile 115 120 125 Val Ser Ala Leu Asn Arg Ser Cys Ala Glu Met Val Ala Lys Tyr Asp 130 135 140 Leu Leu Val Met Thr Thr Gly Arg Ala Thr Ala Thr Ala Ala Ala Thr 145 150 155 160 Glu Ala Tyr Trp Ala Glu His Gly Arg Pro Pro Pro Gly Pro Ser Leu 165 170 175 Tyr Glu Glu Asp Ala Ile Arg Thr Lys Ile Gly Lys Gln Gly Asp Met 180 185 190 Val Pro Lys Glu Val Gln Glu Ala Phe Arg Asn Leu Asp Ser Thr Ala 200 195 205 Leu Leu Thr Glu Glu Asn Phe Gly Lys Pro Asp Ile Ser Ala Lys Asp 210 215 220

-continued Leu Arg Asn Ile Met Tyr Asp His Leu Pro Gly Phe Gly Thr Ala Phe 225 230 235 240 His Gln Leu Val Gln Val Ile Cys Lys Leu Gly Lys Asp Asn Ser Ser 250 245 255 Leu Asp Val Ile His Ala Glu Phe Gln Ala Ser Leu Ala Glu Gly Asp 260 265 Ser Pro Gln Cys Ala Leu Ile Gln Ile Thr Lys Arg Ile Pro Ile Phe 285 275 280 Gln Asp Ala Ala Pro Pro Val Ile His Ile Arg Ser Arg Gly Asp Ile 290 295 300 Pro Lys Ala Cys Gln Lys Ser Leu Arg Pro Val Pro Pro Ser Pro Lys 305 310 315 320 Ile Asp Arg Gly Trp Val Cys Ile Phe Gln Leu Gln Asp Gly Lys Thr 325 330 335 Leu Gly Leu Lys Ile 340 <210> SEO ID NO 8 <211> LENGTH: 326 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Bundibugyo ebolavirus VP40 viral protein <400> SEQUENCE: 8 Met Arg Arg Ala Ile Leu Pro Thr Ala Pro Pro Glu Tyr Ile Glu Ala 1 5 10 15 Val Tyr Pro Met Arg Thr Val Ser Thr Ser Ile Asn Ser Thr Ala Ser 20 25 30 Gly Pro Asn Phe Pro Ala Pro Asp Val Met Met Ser Asp Thr Pro Ser 35 40 45 Asn Ser Leu Arg Pro Ile Ala Asp Asp Asn Ile Asp His Pro Ser His 50 55 60 50
 Thr Pro
 Thr Ser Val
 Ser Ser Ala
 Phe
 Ile
 Leu
 Glu
 Ala
 Met
 Val
 Asn

 65
 70
 75
 80
 Val Ile Ser Gly Pro Lys Val Leu Met Lys Gln Ile Pro Ile Trp Leu 85 90 Pro Leu Gly Val Ala Asp Gln Lys Thr Tyr Ser Phe Asp Ser Thr Thr 100 105 110 Ala Ala Ile Met Leu Ala Ser Tyr Thr Ile Thr His Phe Gly Lys Thr 115 120 125 125 Ser Asn Pro Leu Val Arg Ile Asn Arg Leu Gly Pro Gly Ile Pro Asp 130 135 140 160 Phe Val Leu Pro Pro Val Gln Leu Pro Gln Tyr Phe Thr Phe Asp Leu 165 170 170 175 Thr Ala Leu Lys Leu Ile Thr Gln Pro Leu Pro Ala Ala Thr Trp Thr 180 185 190 Asp Asp Thr Pro Thr Gly Pro Thr Gly Ile Leu Arg Pro Gly Ile Ser 195 200 205 Phe His Pro Lys Leu Arg Pro Ile Leu Leu Pro Gly Lys Thr Gly Lys

											-	con	tin	led	
	210					215					220				
Arg 225	Gly	Ser	Ser	Ser	Asp 230	Leu	Thr	Ser	Pro	Asp 235		Ile	Gln	Ala	Ile 240
Met	Asn	Phe	Leu	Gln 245	Asp	Leu	Lys	Leu	Val 250	Pro	Ile	Asp	Pro	Ala 255	Lys
Asn	Ile	Met	Gly 260	Ile	Glu	Val	Pro	Glu 265	Leu	Leu	Val	His	Arg 270	Leu	Thr
Gly	Lys	Lys 275	Ile	Thr	Thr	Lys	Asn 280	Gly	Gln	Pro	Ile	Ile 285	Pro	Ile	Leu
Leu	Pro 290	Lys	Tyr	Ile	Gly	Met 295	Asp	Pro	Ile	Ser	Gln 300	Gly	Asp	Leu	Thr
Met 305	Val	Ile	Thr	Gln	Asp 310	Сув	Asp	Thr	Суз	His 315	Ser	Pro	Ala	Ser	Leu 320
Pro	Pro	Val	Ser	Glu 325	Гла										
<220 <221 <223 <400)> FH _> NZ 3> OJ)> SH	EATUH AME/H THER EQUEI	RE: CEY: INFO ICE:	mis DRMA 9 Gly	c_fea TION	ature : Bui	ebola e ndibu Gln	ıdλo	ebo:						
1 Thr	Ser	Phe	Phe	5 Val	Trp	Val	Ile	Ile	10 Leu	Phe	His	Lys	Val	15 Phe	Pro
			20				Asn	25				-	30		
		35	-				40 Lys					45		-	
	50					55	Gly				60				
65		-			70		Phe		-	75			_		80
			-	85	-	-	Trp	-	90	-				95	
		-	100				Glu	105			-		110		-
	-	115		-			120 Arg					125			-
	130	-			-	135	Ala	-			140			-	
145					150					155					160
				165			Thr		170					175	
		-	180				Leu	185					190	•	-
		195					His 200					205			-
Pro	Ser 210	Ser	Tyr	Tyr	His	Thr 215	Val	Thr	Leu	Asn	Tyr 220	Val	Ala	Aab	Asn

	2	7
-cont	1 11116	≥a

												con	tin	ued	
Phe 225	Gly	Thr	Asn	Met	Thr 230	Asn	Phe	Leu	Phe	Gln 235	Val	Asp	His	Leu	Thr 240
Tyr	Val	Gln	Leu	Glu 245	Pro	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Val	Gln 255	Leu
Asn	Glu	Thr	Ile 260	Tyr	Thr	Asn	Gly	Arg 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Thr
Leu	Ile	Trp 275	Lys	Val	Asn	Pro	Thr 280	Val	Asp	Thr	Gly	Val 285	Gly	Glu	Trp
Ala	Phe 290	Trp	Glu	Asn	Lys	Lys 295	Asn	Phe	Thr	Lys	Thr 300	Leu	Ser	Ser	Glu
Glu 305	Leu	Ser	Val	Ile	Phe 310	Val	Pro	Arg	Ala	Gln 315	-	Pro	Gly	Ser	Asn 320
Gln	Lys	Thr	Lys	Val 325	Thr	Pro	Thr	Ser	Phe 330	Ala	Asn	Asn	Gln	Thr 335	Ser
Lys	Asn	His	Glu 340		Leu	Val	Pro	Glu 345		Pro	Ala	Ser	Val 350	Val	Gln
Val	Arg	Asp 355	Leu	Gln	Arg	Glu	Asn 360	Thr	Val	Pro	Thr	Pro 365	Pro	Pro	Asp
Thr	Val 370	Pro	Thr	Thr	Leu	Ile 375	Pro	Asp	Thr	Met	Glu 380	Glu	Gln	Thr	Thr
Ser 385		Tyr	Glu	Pro	Pro 390		Ile	Ser	Arg	Asn 395		Gln	Glu	Arg	Asn 400
	Thr	Ala	His	Pro 405	Glu	Thr	Leu	Ala	Asn 410		Pro	Pro	Asp	Asn 415	
Thr	Pro	Ser	Thr 420			Gln	Asp	Gly 425		Arg	Thr	Ser	Ser 430	His	Thr
Thr	Pro	Ser 435		Arg	Pro	Val	Pro 440		Ser	Thr	Ile	His 445		Thr	Thr
Arg			His	Ile	Pro			Met	Thr	Thr			Asp	Thr	Asp
	450 Asn	Arg	Pro	Asn		455 Ile	Asp	Ile	Ser		460 Ser	Thr	Glu	Pro	
465 Pro	Leu	Thr	Asn		470 Thr	Arg	Gly	Ala		475 Asn	Leu	Leu	Thr	Gly	480 Ser
Arg	Arg	Thr	Arg	485 Arg	Glu	Ile	Thr	Leu	490 Arg	Thr	Gln	Ala	Lys	495 Cys	Asn
Pro	Asn	Leu	500 His		Trp	Thr	Thr	505 Gln	Asp	Glu	Gly	Ala	510 Ala	Ile	Gly
Leu	Ala	515 Trp	Ile	Pro	Tyr	Phe	520 Gly	Pro	Ala	Ala	Glu	525 Gly	Ile	Tyr	Thr
	530					535					540			Arg	
545	-				550			-		555	-	-		Ala	560
				565					570				Ū	575	
			580					585		0	-		590	Asp	
		595	-	_	-	-	600	-				605		Asp	-
Суз	Ile 610	Glu	Pro	His	Asp	Trp 615	Thr	ГЛа	Asn	Ile	Thr 620	Asp	Гла	Ile	Asp
Gln	Ile	Ile	His	Aab	Phe	Ile	Asp	Lys	Pro	Leu	Pro	Asp	Gln	Thr	Asp

-continued

				-0011011	iucu	
625	63	30	635		640	
Asn Asp Asr	n Trp Trp Tl 645	hr Gly Trp 2	Arg Gln Trp 650	Val Pro Al	a Gly Ile 655	
Gly Ile Thi	Gly Val I 660	le Ile Ala Y	Val Ile Ala 665	Leu Leu Cy 67	-	
Lys Phe Leu 675						
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	TH: 18935 : DNA	dIvoire ebol	lavirus			
<400> SEQUE	ENCE: 10					
cggacacaca	aaaagaaaga	aggttttttg	atctttattg	tgtgcgaata	actatgagga	60
agattaataa	ttttcctctc	attgacactt	acattaagat	taagattctc	attgatctgt	120
tacttactct	gaggataata	attggtgttc	agaagtaccc	cattccccag	tgggggcaaa	180
gacagtccaa	aagactcaac	ttgtcctatt	caactaatct	gttttgtctc	agtagttcac	240
atattgatca	tacccaggag	ttggacctaa	ttccaaagct	tagagtggga	cctagtgtat	300
cctcggggct	gtaatataat	cagccattta	acacataaca	agccctactg	ttttcttgtt	360
ttgccgtgca	tttagaataa	gagacaactt	aaacctccga	ttcggcaaca	cagggaataa	420
tctcaccaga	cccggcagtg	tcttcaggct	tcatagcccc	aagatggaga	gtcgggccca	480
caaagcatgg	atgacgcaca	ccgcatcagg	tttcgaaaca	gattaccata	agattttaac	540
agcaggattg	tcagtccaac	aaggcattgt	gagacaacgg	gtcattcaag	tccaccaggt	600
tacaaaccta	gaagaaatat	gccaattgat	cattcaagcc	tttgaagctg	gtgttgattt	660
tcaagagagt	gcagacagtt	tcttgctgat	gctatgttta	catcatgctt	atcagggtga	720
ctacaagcaa	ttcttggaaa	gcaatgcagt	caagtacctt	gagggtcatg	gctttcgctt	780
tgaggtcagg	aaaaaggaag	gagtcaagcg	actcgaagaa	ttgcttcctg	ctgcatccag	840
tggcaagagc	atcaggagaa	cactggctgc	aatgcctgaa	gaggagacaa	cagaagcaaa	900
tgccggacag	tteetetet	ttgctagctt	atttcttcct	aagctagttg	tcggagaaaa	960
agcctgtcta	gaaaaggtgc	agcggcaaat	tcaagttcat	tctgagcagg	gattgatcca	1020
ataccccaca	gcctggcagt	cagttggaca	catgatggtc	attttcagac	tgatgagaac	1080
aaattttcta	attaagttcc	tccttataca	tcaagggatg	catatggtag	caggacacga	1140
tgctaacgat	gctgtcatcg	caaactctgt	agctcaagca	cgtttttcag	gattattgat	1200
cgttaaaaca	gtgctagatc	acatccttca	gaaaacagag	cacggagtgc	gtcttcatcc	1260
tttggcaaga	actgctaagg	tcaagaacga	agtaaattcc	tttaaggctg	cccttagctc	1320
gctagcacaa	catggagagt	atgctccttt	tgctcgcttg	ctgaatcttt	ctggagtcaa	1380
caatctcgag	cacggactgt	ttcctcagct	ttctgcaatt	gccctaggtg	tcgcaacggc	1440
acacggcagt	accctggcag	gagtaaatgt	gggggaacag	tatcagcaac	tacgagaagc	1500
agccactgag	gcagaaaaac	aattgcagaa	atacgctgaa	tctcgcgagc	ttgaccatct	1560
aggtctcgat	gatcaagaga	agaagatctt	gaaagacttc	catcagaaga	aaaatgaaat	1620
cagetteeag	cagacaacag	ccatggtcac	actacggaag	gaaaggctag	ccaagctcac	1680
tgaggcaatc	acctccacat	cccttctcaa	gacaggaaaa	cagtatgatg	atgacaacga	1740

tatccccttt	cctgggccca	tcaatgataa	cgaaaactca	gaacagcaag	acgatgatcc	1800
aacagattct	caggacacta	ccatccctga	tatcattgtt	gacccggatg	atggcagata	1860
caacaattat	ggagactatc	ctagtgagac	ggcgaatgcc	cctgaagacc	ttgttctttt	1920
tgaccttgaa	gatggtgacg	aggatgatca	ccgaccgtca	agttcatcag	agaacaacaa	1980
caaacacagt	cttacaggaa	ctgacagtaa	caaaacaagt	aactggaatc	gaaacccgac	2040
taatatgcca	aagaaagact	ccacacaaaa	caatgacaat	cctgcacagc	gggctcaaga	2100
atacgccagg	gataacatcc	aggatacacc	aacaccccat	cgagctctaa	ctcccatcag	2160
cgaagaaacc	ggctccaatg	gtcacaatga	agatgacatt	gatagcatcc	ctcctttgga	2220
atcagacgaa	gaaaacaaca	ctgagacaac	cattaccacc	acaaaaaata	ccactgctcc	2280
accagcacct	gtttatcgga	gtaattcaga	aaaggagccc	ctcccgcaag	aaaaatccca	2340
gaagcaacca	aaccaagtga	gtggtagtga	gaataccgac	aataaacctc	actcagagca	2400
atcagtggaa	gaaatgtatc	gacacatcct	ccaaacacaa	ggaccatttg	atgccatcct	2460
atactattac	atgatgacgg	aggagccgat	tgtctttagc	actagtgatg	ggaaagaata	2520
cgtataccct	gattctcttg	aaggggagca	tccaccgtgg	ctcagtgaaa	aagaggcctt	2580
gaatgaggac	aataggttta	tcacaatgga	tgatcaacaa	ttctactggc	ctgtaatgaa	2640
tcacaggaac	aaattcatgg	ctatccttca	gcaccacaag	taatttette	ataatgacag	2700
atcattgtaa	ggttattacc	accatccctg	caacaaagca	tgaaaaccac	actcaacaac	2760
gccctaccac	aggatacctt	ggagaccata	caccaagatc	agcagctgtg	caaccacccc	2820
catgcgaatc	caccaccaca	accaccaaac	aataatccca	agaccaaacc	gcacacatcc	2880
agatcaaccc	aaaccctcaa	acaccacccc	actccgcgat	cccagaccaa	actccgcccc	2940
agacaagcac	cccacccatc	ccagaaaccg	cacggccgag	aatcgatccc	cagcattcaa	3000
aatgcgttat	taagaaaaaa	catatgatga	agattaaaac	cttcatcaac	attgcacaga	3060
ctttgatcct	taggagttta	ttctagctat	ctacaaaacg	ggtccaaaac	ggaatgattt	3120
ccactagggc	tgcagcaatc	aatgatcctt	cattaccaat	cagaaaccag	tgtacacgtg	3180
gccctgaact	atcaggatgg	atctccgaac	aattaatgac	aggcaaaatt	ccggtacatg	3240
aaatcttcaa	cgacactgag	ccccacataa	gctcagggtc	cgactgcctt	cccagaccca	3300
aaaacacggc	cccccggact	cgcaacaccc	agacacagac	cgatccggtt	tgcaatcaca	3360
attttgaaga	cgttacacaa	gcactaacat	cattaaccaa	tgtcatacaa	aaacaggctc	3420
ttaacttaga	gtctctcgaa	caacgcatca	tagatctaga	gaatggctta	aagccaatgt	3480
atgacatggc	taaagtcatt	tctgcattga	atagatcttg	tgctgagatg	gtagcaaaat	3540
atgatctcct	ggtgatgaca	actggccgcg	caaccgccac	cgccgctgca	actgaggctt	3600
attgggagga	acatggacaa	ccaccacctg	gaccatcact	ttatgaagag	agtgcgatta	3660
gaggcaagat	taacaagcaa	gaggataaag	tacctaagga	agttcaagaa	gcttttcgta	3720
atctggacag	taccagctca	ctaacagaag	agaactttgg	caagccagat	atatctgcaa	3780
aggacctacg	agacatcatg	tatgaccacc	taccaggctt	cggtacggct	tttcaccaac	3840
tggtccaggt	aatttgcaag	ctaggaaaag	acaattctgc	attggacatt	attcatgctg	3900
agttccaagc	cagcettget	gaaggtgatt	ctccccaatg	tgccctgatc	caaataacaa	3960
aacggatccc	catcttccag	gatgccactc	cgcccacaat	tcacatccgc	tctcgtggtg	4020
33			5	5-	5 55 5	

acatcccacg	tgcctgccaa	aaaagtctcc	gtccagttcc	tccatcacca	aaaatagaca	4080	
gaggttgggt	ttgcattttc	caattgcagg	acgggaagac	acttgggctc	aagatatagg	4140	
gtcccccagt	caaagacacg	tgcggtccca	tcctccctca	ccttcagaca	tcaacgcatg	4200	
gcagtcccaa	acaccggtga	gggaggcgcc	cggcgacaac	acatgatgat	aggetgatet	4260	
tcgggataag	agacatgaaa	aaccaaaaag	ccgtttacat	ccagatccaa	gatcaagagt	4320	
ggcttggaaa	taaggggcac	ttgttctttg	tctcaaagga	cttacaaaaa	caagggtgat	4380	
gaagattaag	aaaaagcctc	cttcagttgc	aaggagctaa	ttcttaaaac	ttcatctaga	4440	
ctaaggataa	atcgattcca	atcacgatga	ggagaatcat	cctacccacg	gcaccacctg	4500	
aatacatgga	ggctgtttac	ccaatgagaa	caatgaattc	tggtgcagac	aacactgcca	4560	
gtggccctaa	ttacacaaca	actggtgtga	tgacaaatga	tactccctct	aattcactcc	4620	
gaccagttgc	agatgataat	attgatcatc	cgagccacac	gcctaacagt	gttgcctctg	4680	
catttatatt	ggaagctatg	gtgaatgtaa	tatctggccc	gaaagtgctg	atgaagcaaa	4740	
tcccaatctg	getteetetg	ggtgtctctg	accagaagac	atatagettt	gattcaacca	4800	
ctgctgccat	tatgctagca	tcatatacca	tcactcattt	tggcaaaacc	tcaaatcccc	4860	
ttgtgagaat	caaccgactt	ggtcctggca	tacctgatca	cccactacga	ctcctaagaa	4920	
taggaaatca	agccttccta	caagagtttg	tgctacctcc	tgtacaactg	ccacaatact	4980	
tcacttttga	tctgacagcg	ctgaagctga	tcacccagcc	actcccagcg	gcaacctgga	5040	
cagatgaaac	tccagctgtg	tcaactggca	cgctccgccc	agggatctca	ttccatccca	5100	
aattaaggcc	tatcctgcta	ccaggaagag	ctggaaagaa	gggctccaac	tccgatctaa	5160	
catctcctga	caaaatccag	gctataatga	atttcctaca	agacctcaaa	attgtaccaa	5220	
tcgatccaac	caagaatatc	atgggtattg	aagtgccaga	actcctggtt	cacaggctga	5280	
ctgggaagaa	gacaactacc	aagaatggtc	aaccaatcat	tccaattctg	ctaccaaagt	5340	
acattggtct	tgatcctcta	tctcaaggtg	atctcacaat	ggtgatcact	caggactgtg	5400	
attcctgcca	ctccccggcc	agtcttcccc	cagtcaatga	aaaatgacca	tgagactcaa	5460	
catcacactg	ccagagcacc	tcaccgcaag	tctatacaac	aatcaacccc	ggcatctaca	5520	
acctgcaaaa	accagcccat	ctgatactcc	tggcatcggg	ggcaagacaa	ggcagccaag	5580	
cagcagcccc	cgagccgagc	ccaaacccat	tacacccgag	cccaacaccc	atccagcaac	5640	
ccacaaccgt	caaacgcaca	gatggacaag	caaagaacat	caagccagga	gcaacacaga	5700	
ccccaagtct	aagctgatca	acccctcccg	caatcccacc	aacgccagca	aaaatccccc	5760	
aactcgatac	caaccccaag	caaatcagct	caaaccgtct	atctctcccc	gcttcactcc	5820	
acaccccaga	ttcagcaaac	gatcaacgca	cttcttatgc	cacagettat	attaagaaaa	5880	
agaacttgat	gaagattaag	gcaaccagtg	gtgctatctt	catctctttg	atttgagtct	5940	
taagtgaata	cacaggttct	aatactgttc	ttctgtccaa	cggtataatt	cagccaggcc	6000	
taagacagta	gctaatcaca	gtcatcatgg	gagcgtcagg	gattctgcaa	ttgccccgtg	6060	
agcgcttcag	gaaaacatct	ttctttgttt	gggtaataat	cctattccat	aaagtctttt	6120	
caatcccgtt	gggggttgta	cacaacaata	ccctacaagt	gagtgatatt	gacaagtttg	6180	
tgtgccgaga	caaactctct	tcaactagcc	aattgaagtc	agtcgggttg	aacttggagg	6240	
gcaatggagt	agcaactgat	gtaccaacgg	caaccaaaag	atggggtttt	cgagctggtg	6300	

ttccaccaaa	ggtggtaaat	tgcgaagctg	gagaatgggc	tgagaactgt	tataacctgg	6360
ctataaagaa	agttgatggt	agtgagtgcc	taccagaagc	ccctgaggga	gtgagggatt	6420
ttccccgttg	ccgctatgta	cacaaagtct	caggaactgg	accatgccca	ggaggactcg	6480
cctttcacaa	agaaggagcc	ttcttcctgt	atgaccgact	cgcatcaaca	atcatttatc	6540
ggggtacaac	ctttgccgaa	ggagttattg	catttctgat	cttgcctaag	gcgcgaaagg	6600
attttttcca	gteteeteea	ttgcatgagc	ctgccaacat	gaccacggat	ccctccagtt	6660
actatcacac	gacaacaata	aactacgtgg	ttgataattt	tggaaccaac	accacagagt	6720
ttctgttcca	agtcgatcat	ttgacgtatg	tgcagctcga	ggcaagattc	acaccacaat	6780
teettgteet	cctaaatgaa	accatctact	ctgataaccg	cagaagtaac	acaacaggaa	6840
aactaatctg	gaaaataaat	cccactgttg	ataccagcat	gggtgagtgg	gctttctggg	6900
aaaataaaaa	aacttcacaa	aaaccctttc	aagtgaagag	ttgtctttcg	tacctgtacc	6960
agaaacccag	aaccaggtcc	ttgacacgac	agcgacggtc	tctcctccca	tctccgccca	7020
caaccacgca	gccgaagacc	acaaagaatt	ggtttcagag	gattccactc	cagtggttca	7080
gatgcaaaac	atcaagggaa	aggacacaat	gccaaccaca	gtgacgggtg	taccaacaac	7140
cacaccctct	ccatttccaa	tcaatgctcg	caacactgat	cataccaaat	catttatcgg	7200
cctggagggg	ccccaagaag	accacagcac	cacacagcct	gccaagacca	ccagccaacc	7260
aaccaacagc	acagaatcga	cgacactaaa	cccaacatca	gagccctcca	gtagaggcac	7320
gggaccatcc	agccccacgg	tccccaacac	cacagaaagc	cacgccgaac	ttggcaagac	7380
aaccccaacc	acactcccag	aacagcacac	tgccgccagt	gccattccaa	gagccgtgca	7440
ccccgacgaa	ctcagtggac	ctggcttcct	gacgaacaca	atacgggggg	ttacaaatct	7500
cctgacagga	tccagaagaa	agcgaaggga	tgtcactccc	aatacacaac	ccaaatgcaa	7560
cccaaacctg	cactattgga	cagccttgga	tgagggtgct	gccataggtt	tagcctggat	7620
accatacttc	gggccagcag	ctgagggaat	ttacactgaa	ggcataatgg	agaatcaaaa	7680
tggattgatc	tgtggattga	ggcagctggc	caacgaaacg	acacaagctc	ttcaattgtt	7740
cttaagggca	actactgagt	tgcgtacatt	ctctatacta	aatcggaaag	caatagactt	7800
cttgctccaa	agatggggag	gaacatgtca	cattctaggg	cctgattgtt	gcattgaacc	7860
ccaagattgg	accaaaaata	tcactgataa	aattgatcaa	ataatccatg	actttgtcga	7920
taataatctt	ccaaatcaga	atgatggcag	caactggtgg	actggatgga	aacaatgggt	7980
tcctgctgga	ataggaatca	caggagtaat	cattgctatt	attgctttgc	tgtgcatttg	8040
caaattcatg	ctttgaacta	atatagcatc	atactttcta	atattccccc	aatatgaatt	8100
tttgttttcg	attttattta	atgatatatc	ctctgtatac	ctcactaatg	tactcgagca	8160
taatttccct	gatagacttg	attgtatttg	atgattaagg	acctcacaaa	atteetgggg	8220
attgaaaaga	actggataac	tcaataaatt	ttatgctagg	accacaaata	cacttgatga	8280
agattaagaa	aaagataatc	ttatgattat	cattgatctt	catctatacc	ttaaatactc	8340
tattcaagga	gagtatgaca	aaaccaagta	gtattggata	aacttgtcct	gcattcaaat	8400
ctgaagacat	acggcttatc	tattcactat	tgtattagaa	aatctaggga	atatcatttg	8460
aaactaatta	gtgactaaaa	cacacaactc	aagtcggcca	gaatggaagt	tgttcatgaa	8520
agaggtcgct	ccaggatete	ccgacaaaac	acaagggatg	gacctagtca	tttagtacgg	8580

gcgagatcat	cctctcgagc	tagttatcga	agtgaatacc	atacaccaag	gagtgcctcg	8640	
cagateegtg	tccccactgt	ctttcatcgg	aaaaagacag	atttattgac	agttccacca	8700	
gcacctaaag	atgtatgccc	gactttaaag	aaagggtttc	tatgtgacag	caatttctgt	8760	
aaaaaggatc	accaacttga	aagcttaaca	gatagagagt	tactcttgct	gattgcacgc	8820	
aagacatgtg	gatccacgga	acaacaacta	agcatagttg	ctccaaaaga	ttcacgtctg	8880	
gctaatccta	ttgctgagga	tttccaacaa	aaagatgggc	ctaaggtaac	actgtcgatg	8940	
cttatagaga	cagcagagta	ttggtccaaa	caggacatta	agaacatcga	tgattcaaga	9000	
ttaagagett	tattgaccct	ttgtgctgtt	atgacgcgca	aattttcaaa	atctcaactt	9060	
agcttgctat	gtgaaagcca	cttacggcga	gaaggacttg	gtcaagacca	atcagagtca	9120	
gttctggagg	tatatcaacg	cttacacagc	gataaaggtg	ggaatttcga	ggcagcacta	9180	
tggcagcagt	gggatcggca	atcattgata	atgttcataa	cagcattttt	aaatattgca	9240	
ttacaattac	catgtgagag	ttcatctgtt	gttatttcag	gtttgagaat	gctgataccc	9300	
cagtcggaag	ccactgaggt	tgtaaccccc	tccgaaacct	gcacatggtc	agaaggagga	9360	
agttcccatt	gaagccccaa	atcacaaggc	gagctaaaaa	atcccttttg	aacatgcata	9420	
acatcacata	caatttcaaa	ggcattggaa	taaatggtga	tttcaggaag	attagtgttt	9480	
gccctcaaaa	tcagatccga	gcaataatca	tctactctac	agccagttaa	tttctaatat	9540	
aaaggttaaa	aaaatgctgc	aggccagcta	ttgttccaca	ggtcccaatt	cttcttgtta	9600	
aattgtagga	gctagcacaa	gtgatgcaat	taaatgatac	tagtatatac	aatgccacca	9660	
acttaattct	aagattttgt	atatctcgga	aattcaaaat	taaatgctac	gttattgatt	9720	
caattaagaa	aaagacaatg	gaccatcaaa	attagttcaa	tacctgaact	aatgcactta	9780	
tagaaacagg	agaaccagcc	agacagcaga	caaataacaa	tgaaccacaa	tatgttactg	9840	
ctataatgaa	gttcgttaat	tcaaaaacaa	atgatgaaga	ttaatgcaga	tgtctaaagg	9900	
ataaacactc	catgcatcag	tgttataatt	gggctctgta	gaaaatcttc	atctcctcca	9960	
acctacctca	aagaaggatt	ttaccgcgat	tgggagttat	aacgacaata	gggacaacca	10020	
cctttgacac	tagccaagct	tgtcgtgggc	acacagcatt	ttatcttgca	acgtcgacat	10080	
tcccatcaat	ctgaggagta	acagctatca	aaacaacgca	tatgtagaca	ttgtcggtaa	10140	
tagtactgcc	taagacaact	atttataata	acagttggaa	ttcattttt	cacccaagct	10200	
attctcaagt	taacagttga	aacaggactc	gacccaggac	aactccggat	acgtaacata	10260	
agaaaagaac	aacccttgac	ccagagtgaa	caagctcata	ctatcaaggc	taatcctcgg	10320	
gcctgcctgg	agtccacaat	ggccaaggct	actgggaggt	acaaccttat	ctccccaaag	10380	
aaagatcttg	aaaaagggct	ggttctgaat	gacctttgca	ctctctcagt	ggcccagacg	10440	
gtccagggat	ggaaggttac	ctgggctggg	attgaatttg	atgttacaca	gaaagggatg	10500	
gccttattgc	acaggctcaa	gaccagtgat	tttgctccag	cctggtcaat	gaccaggaac	10560	
ttatttccac	atctctttca	aaacccgaac	tctacaattg	agtcgccact	ttgggcactg	10620	
cgggtcatac	tagcagcagg	tattcaagat	cagctaattg	atcaatcgtt	gatcgaaccc	10680	
ttggcaggag	cgctaggctt	aattgctgat	tggcttctta	ctactggaac	aaaccacttt	10740	
caaatgcgca	cacaacaggc	taaggagcaa	ctaagtctaa	aaatgttgtc	cctggtgcga	10800	
tcaaacatcc	taaagttcat	caaccaacta	gatgcactac	atgttgtgaa	ttacaatgga	10860	

-continued

cttctcagta gcattgaaat tggcaccaaa agccatacaa ttataattac ccggacaaat 10920 atgggttttt tggtagagtt gcaagagcct gacaaatcag ccatgaacac cagaaaacca 10980 ggaccagtca aatteteeet eeteeatgaa teaacettga agacaettge taaaaaaeet 11040 gcgacccaga tgcaagcact aatcttagaa ttcaatagtt ctctcgctat ttaactcaac 11100 tcatcaaaat gctaacttgt gatccttaag ctgcacctta gacttttgat aagaatacta 11160 actattgatg attgtctttg acatgaggat aagaacactg cccattagat agatggggtt 11220 caccattaat acacaattac ccaatcatgt taacagcagt tagatccctc aagtatatca 11280 agttcattct accctttgca ttgtcactct aattaaatca cctgatacaa ttatgttaat 11340 tagetagatt eteteatttt tagaettgtt tgetagaata attgateate eaettgatta 11400 cacatccaac tagggtctag ttcatagatt gctaataatc tttagttcaa tactaatgac 11460 aaagagatta gattagctat agcttgagga agattaagaa aaagtgtctg tggggtcttt 11520 ccgtgtagaa gggcacacag ccataattet teetetttat acaacatgge tacacaacat 11580 acgcaatatc cagacgcaag gttatcatca cctatagttt tagatcagtg tgatcttgtc 11640 actcgtgctt gtggattgta ttccgcatac tccttaaatc cccaactaaa gaactgtaga 11700 ctaccgaaac atatataccg actaaaatat gacaccactg ttacagagtt tttgagtgat 11760 gtgccggtag caacattgcc agcggatttt ttagtaccta catttcttag gactctatca 11820 ggaaatggtt cttgtccaat tgatccaaaa tgcagtcaat ttttagaaga aattgtcaat 11880 tatactctac aagatattcg cttcctaaac tattacctca atcgagccgg agtgcataac 11940 gatcatgtgg atagggattt tggacaaaaa attcgcaatc taatttgcga caatgaggtt 12000 ttacatcaaa tgtttcactg gtatgatctt gcaattctag cacgtagagg gcgactaaat 12060 agagggaata atcgctcaac atggtttgca agtgataatt tggtagatat cctaggttat 12120 ggagattata ttttttggaa aataccatta tcactactac cagtggatac acaaggcctc 12180 ccacatgcag ccaaggactg gtatcatgaa tcggttttca aggaggctat tcaaggccat 12240 acacacatcg tgtccatctc tacagcagat gtcttaatca tgtgtaagga cataatcacc 12300 tgtcgattta atactttact gattgctgct gtggcaaatc tagaggattc agttcattca 12360 gattaccett taccagaaac agtgtetgae etatacaaag eaggagatta tttaatetea 12420 ttgctaggat cagaaggtta caaagtcata aaattccttg agccgttatg cttagcaaag 12480 atccaactct gctcaaatta cactgagagg aaaggaagat tcctcactca aatgcattta 12540 getgtaaate atacaettga ggaaettaea gggteeegag aattaaggee acaaeagatt 12600 cggaaggtaa gggaattcca tcaaatgctg ataaacctta aggcaactcc tcaacaactc 12660 tgtgagttgt tttcagtgca aaagcattgg gggcaccctg tcttgcatag cgaaaaggct 12720 atccaaaaag taaagaagca tgcaacagtg ataaaagcat tgcgcccaat aataatcttt 12780 gaaacatatt gtgtgtttaa atacagcatt gcaaaacatt attttgatag tcagggtacg 12840 tggtacagtg tgacttctga cagatgctta acaccaggcc tttcctctta catcaaaaga 12900 aaccaatttc ctccactacc tatgatcaaa gaacttttgt gggaatttta tcacttagat 12960 catcctccgt tattctccac caaagtgatt agtgatttga gtatctttat taaagatcgt 13020 gctactgcag tcgagaaaac atgctgggac gcagtttttg aacccaatgt tcttggttat 13080 aacccaccga ataaatttgc tacaaaaagg gtacctgagc aattccttga acaggagaat 13140

-continued

ttctcaatag agagtgtcct acattatgct caacgtctgg aatatcttct cccggagtac 13200 cggaacttct ctttttcact caaggagaag gagttaaaca ttggacgagc ttttgggaaa 13260 ttgccatatc caacacgcaa tgttcaaact ctgtgcgaag ctttgttagc agatggtttg 13320 gcgaaagcat tcccaagcaa tatgatggtt gtgacagagc gcgagcaaaa agaaagcctt 13380 ttgcatcaag cgtcttggca tcacacaagt gatgattttg gtgagaatgc tactgttaga 13440 ggcagtagtt ttgtaacaga cttggaaaaa tacaatttag cattccgata tgagtttaca 13500 gctcctttta ttgaatactg taatcgttgt tacggtgtaa gaaatttgtt taattggatg 13560 cactacacta taccacagtg ttatatacat gtgagtgatt attataaccc cccacatgga 13620 gtctctctcg aaaaccgaga aaatccacca gaaggtccaa gctcttaccg tggtcatcta 13680 ggcgggattg agggacttca acaaaaactc tggacaagca tctcatgtgc acagatttca 13740 ttagttgaaa tcaaaaccgg ttttaaactg cgatctgcgg taatgggtga caatcaatgt 13800 ataactgtac tetetgtatt teeectegaa actgagteta gtgageaaga attaagttet 13860 gaagataatg ccgctagagt agctgctagc ttagcaaaag tcacaagtgc ctgcggcatc 13920 tttttaaaac ctgatgaaac ttttgttcac tcaggtttca tttattttgg caaaaaacaa 13980 tatttgaatg gagtacaatt acctcaatca ctgaaaactg ctactagaat tgcacccttg 14040 tcagatgeta tetttgatga tetteaaggg acaetageta geataggeae ggettttgaa 14100 agatctatct ccgaaactag gcacgtagtc ccttgtagag tagcagctgc attccatacc 14160 tttttttccg taagaatctt acaatatcat catcttggct tcaacaaggg aacagacctg 14220 ggtcaattgt cattaagcaa gccattagat tttggaacta taactttggc cttggcagta 14280 ccacaagtet tgggtggett atcatteeta aateeagaaa aatgttttta tagaaatetg 14340 ggtgatcctg ttacttcagg gctgtttcag ctcaagacat atcttcaaat gatccacatg 14400 gatgatttgt ttttaccttt gatcgcaaag aacccaggga actgtagcgc aattgacttt 14460 gtgttaaacc ctagtgggtt aaacgtaccg gggtcacagg atttgacatc cttcctacgt 14520 cagatagtgc gccgaacaat tactctaagt gctaaaaata aattaataaa cactttgttc 14580 cattettetg etgatttaga agatgaaatg gtttgeaaat ggttgettte ttetacacea 14640 gtcatgagta ggtttgccgc cgatatattt tctcgcactc ccagtgggaa acgtttacag 14700 atcttaggtt accttgaagg gactagaaca ttgttagcct ctaaaattat aaatcataat 14760 actgagacac ctatectaga tegattgagg aaaattaege tgeaaaggtg gageetgtgg 14820 tttagttatc tcgaccactg tgatcaagtt ctggctgatg ccctaactca gataacctgc 14880 actgtggact tagcacagat tcttcgcgag tacacctggg cacacatact agagggaagg 14940 cageteattg gageaacaet teettgtata etagaacaae taaatgteat etggeteaaa 15000 ccatatgagc attgccctaa atgtgcaaag tcagcaaacc ctaaagggga accttttgtt 15060 tctattgcaa ttaaaaaaca tgtagtaagt gcttggcctg atcaatcacg acttagttgg 15120 acaattggag atggcatccc ttatatcgga tctcgaacag aggataagat tgggcagcca 15180 gccatcaaac caaaatgccc ttcagcagcc ttacgtgaag caattgagtt gacatcaaga 15240 ttgacttggg ttactcaagg tggagcaaac agcgacttac tagttaaacc cttcatagaa 15300 gcacgagtaa atttaagcgt acaggaaatt ctccaaatga caccttctca ttactccggc 15360 aacattgtgc atcgatataa tgatcaatat agtccacact catttatggc aaataggatg 15420

-continued

agtaattetg etactaggtt agttgttteg acaaacaete ttggagaatt tteaggagga 15480 ggtcagtcag caagagatag taatattatc ttccagaatg tcattaattt tgctgttgca 15540 ctttttgatc tacgatttag gaacgtggct acttcttcta tacaacatca tcgggctcat 15600 cttcatttgt caaagtgttg cacgcgagag gttccagccc aatatttagt ttatacatca 15660 acattgccat tggaccttac acggtatcgg gataatgagt tgatttacga tgacaatcca 15720 ttaagaggtg gtttaaattg caatctttct tttgataatc cgcttttcaa gggccagaga 15780 cttaacataa ttgaagaaga cttgattaga ctaccttact tatcaggatg ggagctagct 15840 aaaactgtta tccaatctat aatttctgac agcaacaatt catcaacgga tccaatcagt 15900 aqtqqqqaaa cacqatcatt caccactcac ttcttqacat atcctaaqat tqqactacta 15960 tatagttttg gtgcactcat cagttattat ctaggcaaca ccattattag aaccaaaaaa 16020 ttgactctta acaacttcat atattaccta gctactcaaa tacataattt acctcatcgc 16080 tcgttgagaa tccttaaacc tactttgaaa cacgctagtg ttatctcgag attaataagt 16140 attgactctc acttctcaat ttatattgga ggaactgctg gtgatcgagg actttccgat 16200 gcggcaagat tgtttcttag aactgccatt actgtcttcc ttcaattcgt tagaaagtgg 16260 atagttgaac gcaagacagc tattccactg tgggtcatct accctctaga aggtcaaagt 16320 cctagtccga tcaacagttt tctacaccac gtcatcgcat tgttgcaaca tgagtcctcc 16380 cacgatcatg tttgtgctgc agaagcccac agtcgagtgg agacatttga taatttagtt 16440 tatatgtgta aaagcacagc aagtaacttc tttcatgctt cattagcata ctggagaagt 16500 cgatctaaaa atcaagacaa aagagagatg acaaagatat tatctttgac gcaaacggaa 16560 aagaaaaatt catteggeta tacageacat eeagaaagea etgetgttet tggtteeete 16620 cagaccagcc ttgctccacc tccatctgct gacgaggcta catatgatag gaaaaaacaaa 16680 gttttgaaag cttccagacc tggcaagtat tcccagaata caaccaaagc cccacccaac 16740 caaaccagtt gtcgcgatgt atctcccaat atcacaggca cagatgggtg cccttctgcc 16800 aatgagggtt ctaacagcaa taacaataat ttagtctcgc acagaattgt actgccgttt 16860 tttacattgt ctcataatta taacgaaaga ccctctatca gaaagtctga ggggacaaca 16920 gagattgtaa ggcttactcg gcagctgagg gcaataccag acaccacaat atattgccgc 16980 ttcacgggaa tagtttcttc aatgcactat aagctcgatg aagtcctttg ggaatttgat 17040 aattttaagt ctgctataac acttgccgaa ggtgaaggtt cgggtgcatt actcttatta 17100 caaaaatata aagtagaaac cttgtttttt aatacactag ccacagaaca cagcattgaa 17160 gcagaaatta tttctggaat aactacacca agaatgcttc tccctattat gtctaggttc 17220 catggtggac aaataaaagt cactttaaac aattctgcaa gccagattac cgatattact 17280 aatccaagtt ggttggcaga ccaaaaatct aggatcccta agcaagtaga gattataacc 17340 atggatgctg aaacaacaga aaacattaat cggtcaaaat tgtacgaagc agtccaacag 17400 ctgattgtct cacatattga tccgaatgca ctcaaagttg tggttcttaa agttttctta 17460 agtgacattg atggaatcct atggctgaat gataacctta cccctttgtt tgggctgggt 17520 tacttgatca ageogatcae etctageeca aaatetagtg agtggtaeet atgtetetea 17580 aaccttcttt caacttcaag acgattacct catcagagtc atactacttg catgcatgtt 17640 attcaaacag cactccagct acaaattcag aggagctcat attggcttag ccaccttgtc 17700

-continued

caqtatqcca atcataattt qcatttaqat tatattaatc tcqqtttccc ttcattqqaq 17760 agggttttat accatagata caatttagtc gattctcaga aaggcccttt gacttccatt 17820 gtccaacatc tagcgcacct gcagaccgag attagggagt tggttaatga ctataatcaa 17880 caaaqacaaa qtcqaaccca aacatatcat ttcattaaaa caataaaaqq tcqtattaca 17940 aaattggtaa atgattacct taagttcttt ctaataatac aagccttaaa gcacaattgc 18000 acatggcaag aggaactaag agctcttcca gatctaatta gtgtctgcac tcgattctat 18060 catactcgaa actgttcatg tgaaaaccgg ttcctagtac agactttata cttatcacgc 18120 atgcaggatt cggaaatcaa actaatagat agattgaccg gccttcttag tctatgtcca 18180 aatqqttttt ttcqqtaaqq actcttqacq tacaaactcc acataqttat acaatqqtac 18240 caggacacta tatgtaaatt gaccctaaga aagagtaatt cgacacacag agttctcaag 18300 tgaaacccct catctcagat tatctgtggt tgcaattcta atatccgatt gttaccccgt 18360 gagtataact ccagattaat ataagaaaat accttttgtc ctgcaaattt atcttaaatt 18420 caagtacata cgctccaaat cgtataaaat attaagaaaa agttaatctg cttgctttaa 18480 ttataacttt aatattcqac aaatagttaa cggtctcatc actcaaaaat ttcattaaca 18540 aaagaagtac tctgagtata ttcacatatc atatgtgatt aacatataag caacgcatga 18600 tgcgccttcc tcttacttat tgtgttgtca cgcagtcgtt gtactacctc gaaaattcca 18660 aacaataaat cgtgtctatc ccgcatttag tgtctttaat ttaagatctc aaatccaaaa 18720 aactgggttt atgttgatgt aaatcaataa taccgaaatt gcttgatatt aaaataaagc 18780 ttaaaggatt tttccttaaa cggtgatgtt aggtatatag gaaagctcga tcacgatgtc 18840 ccttactcag aaaaagaaaa acggaagccc tattggccat ttaatcgtac acaaaaatat 18900 ctttaccaaa ttgttttctc ttttttgtgt gtcca 18935 <210> SEQ ID NO 11 <211> LENGTH: 739 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Cote dIvoire ebolavirus NP protein <400> SEQUENCE: 11 Met Glu Ser Arg Ala His Lys Ala Trp Met Thr His Thr Ala Ser Gly 1 10 15 Phe Glu Thr Asp Tyr His Lys Ile Leu Thr Ala Gly Leu Ser Val Gln $_{20}$ Gln Gly Ile Val Arg Gln Arg Val Ile Gln Val His Gln Val Thr Asn 35 40 45 Leu Glu Glu Ile Cys Gln Leu Ile Ile Gln Ala Phe Glu Ala Gly Val 55 60 Asp Phe Gln Glu Ser Ala Asp Ser Phe Leu Leu Met Leu Cys Leu His 65 70 75 80 His Ala Tyr Gln Gly Asp Tyr Lys Gln Phe Leu Glu Ser Asn Ala Val 90 Lys Tyr Leu Glu Gly His Gly Phe Arg Phe Glu Val Arg Lys Lys Glu 100 105 110 Gly Val Lys Arg Leu Glu Glu Leu Leu Pro Ala Ala Ser Ser Gly Lys

											_	con	tin	ued	
		115					120					125			
Ser	Ile 130	Arg	Arg	Thr	Leu	Ala 135	Ala	Met	Pro	Glu	Glu 140	Glu	Thr	Thr	Glu
Ala 145	Asn	Ala	Gly	Gln	Phe 150	Leu	Ser	Phe	Ala	Ser 155	Leu	Phe	Leu	Pro	Lys 160
Leu	Val	Val	Gly	Glu 165	ГЛа	Ala	Суз	Leu	Glu 170	Lys	Val	Gln	Arg	Gln 175	Ile
Gln	Val	His	Ser 180	Glu	Gln	Gly	Leu	Ile 185	Gln	Tyr	Pro	Thr	Ala 190	Trp	Gln
Ser	Val	Gly 195	His	Met	Met	Val	Ile 200	Phe	Arg	Leu	Met	Arg 205	Thr	Asn	Phe
Leu	Ile 210	Lys	Phe	Leu	Leu	Ile 215	His	Gln	Gly	Met	His 220	Met	Val	Ala	Gly
His 225	Asp	Ala	Asn	Asp	Ala 230	Val	Ile	Ala	Asn	Ser 235	Val	Ala	Gln	Ala	Arg 240
Phe	Ser	Gly	Leu	Leu 245	Ile	Val	Lys	Thr	Val 250	Leu	Asp	His	Ile	Leu 255	Gln
ГАЗ	Thr	Glu	His 260	Gly	Val	Arg	Leu	His 265	Pro	Leu	Ala	Arg	Thr 270	Ala	Lys
Val	Lys	Asn 275	Glu	Val	Asn	Ser	Phe 280	Lys	Ala	Ala	Leu	Ser 285	Ser	Leu	Ala
Gln	His 290	Gly	Glu	Tyr	Ala	Pro 295	Phe	Ala	Arg	Leu	Leu 300	Asn	Leu	Ser	Gly
Val 305	Asn	Asn	Leu	Glu	His 310	Gly	Leu	Phe	Pro	Gln 315	Leu	Ser	Ala	Ile	Ala 320
Leu	Gly	Val	Ala	Thr 325	Ala	His	Gly	Ser	Thr 330	Leu	Ala	Gly	Val	Asn 335	Val
Gly	Glu	Gln	Tyr 340	Gln	Gln	Leu	Arg	Glu 345	Ala	Ala	Thr	Glu	Ala 350	Glu	Lys
Gln	Leu	Gln 355	Lys	Tyr	Ala	Glu	Ser 360	Arg	Glu	Leu	Asp	His 365	Leu	Gly	Leu
Asp	Asp 370	Gln	Glu	Гла	ГЛа	Ile 375	Leu	Lys	Asp	Phe	His 380	Gln	Lys	Гла	Asn
Glu 385	Ile	Ser	Phe	Gln	Gln 390	Thr	Thr	Ala	Met	Val 395	Thr	Leu	Arg	Lys	Glu 400
Arg	Leu	Ala	Lys	Leu 405	Thr	Glu	Ala	Ile	Thr 410	Ser	Thr	Ser	Leu	Leu 415	Lys
Thr	Gly	Lys	Gln 420	Tyr	Asp	Asp	Asp	Asn 425	Asp	Ile	Pro	Phe	Pro 430	Gly	Pro
Ile	Asn	Asp 435	Asn	Glu	Asn	Ser	Glu 440	Gln	Gln	Asp	Asp	Asp 445	Pro	Thr	Asp
Ser	Gln 450	Asp	Thr	Thr	Ile	Pro 455	Asp	Ile	Ile	Val	Asp 460	Pro	Asp	Asp	Gly
Arg 465	Tyr	Asn	Asn	Tyr	Gly 470	Asp	Tyr	Pro	Ser	Glu 475	Thr	Ala	Asn	Ala	Pro 480
Glu	Asp	Leu	Val	Leu 485	Phe	Asp	Leu	Glu	Asp 490	Gly	Asp	Glu	Asp	Asp 495	His
Arg	Pro	Ser	Ser 500	Ser	Ser	Glu	Asn	Asn 505	Asn	Lys	His	Ser	Leu 510	Thr	Gly
Thr	Asp	Ser 515	Asn	Lys	Thr	Ser	Asn 520	Trp	Asn	Arg	Asn	Pro 525	Thr	Asn	Met

											-	COIL	ιш	uea	
Pro	Lys 530	Гла	Asp	Ser	Thr	Gln 535	Asn	Asn	Asp	Asn	Pro 540	Ala	Gln	Arg	Ala
Gln 545	Glu	Tyr	Ala	Arg	Asp 550	Asn	Ile	Gln	Asp	Thr 555	Pro	Thr	Pro	His	Arg 560
Ala	Leu	Thr	Pro	Ile 565	Ser	Glu	Glu	Thr	Gly 570	Ser	Asn	Gly	His	Asn 575	Glu
Asp	Asp	Ile	Asp 580	Ser	Ile	Pro	Pro	Leu 585	Glu	Ser	Asp	Glu	Glu 590	Asn	Asn
Thr	Glu	Thr 595	Thr	Ile	Thr	Thr	Thr 600	Lys	Asn	Thr	Thr	Ala 605	Pro	Pro	Ala
Pro	Val 610	Tyr	Arg	Ser	Asn	Ser 615	Glu	ГЛЗ	Glu	Pro	Leu 620	Pro	Gln	Glu	ГЛа
Ser 625	Gln	Lys	Gln	Pro	Asn 630	Gln	Val	Ser	Gly	Ser 635	Glu	Asn	Thr	Asp	Asn 640
ГЛа	Pro	His	Ser	Glu 645	Gln	Ser	Val	Glu	Glu 650	Met	Tyr	Arg	His	Ile 655	Leu
Gln	Thr	Gln	Gly 660	Pro	Phe	Asp	Ala	Ile 665	Leu	Tyr	Tyr	Tyr	Met 670	Met	Thr
Glu	Glu	Pro 675	Ile	Val	Phe	Ser	Thr 680	Ser	Asp	Gly	Гла	Glu 685	Tyr	Val	Tyr
Pro	Asp 690	Ser	Leu	Glu	Gly	Glu 695	His	Pro	Pro	Trp	Leu 700	Ser	Glu	Гла	Glu
Ala 705	Leu	Asn	Glu	Asp	Asn 710	Arg	Phe	Ile	Thr	Met 715	Asp	Asp	Gln	Gln	Phe 720
Tyr	Trp	Pro	Val	Met 725	Asn	His	Arg	Asn	Lys 730	Phe	Met	Ala	Ile	Leu 735	Gln
His	His	Lys													
)> SH L> LH														
	2 > T 3 > OF			Bund	libu	avo e	ebola	avirı	15						
<220)> FH L> N2	EATU	RE:												
								Ivoi	re ek	oola	viru	s VP	35 NI	? pro	otein
<400)> SI	EQUEI	ICE :	12											
Met 1	Ile	Ser	Thr	Arg 5	Ala	Ala	Ala	Ile	Asn 10	Asp	Pro	Ser	Leu	Pro 15	Ile
Arg	Asn	Gln	Cys 20	Thr	Arg	Gly	Pro	Glu 25	Leu	Ser	Gly	Trp	Ile 30	Ser	Glu
Gln	Leu	Met 35	Thr	Gly	ГЛа	Ile	Pro 40	Val	His	Glu	Ile	Phe 45	Asn	Asp	Thr
Glu	Pro 50	His	Ile	Ser	Ser	Gly 55	Ser	Asp	Суз	Leu	Pro 60	Arg	Pro	Гла	Asn
Thr 65	Ala	Pro	Arg	Thr	Arg 70	Asn	Thr	Gln	Thr	Gln 75	Thr	Asp	Pro	Val	Cys 80
Asn	His	Asn	Phe	Glu 85	Asp	Val	Thr	Gln	Ala 90	Leu	Thr	Ser	Leu	Thr 95	Asn
Val	Ile	Gln	Lys 100	Gln	Ala	Leu	Asn	Leu 105	Glu	Ser	Leu	Glu	Gln 110	Arg	Ile
Ile	Asp	Leu 115	Glu	Asn	Gly	Leu	Lys 120	Pro	Met	Tyr	Asp	Met 125	Ala	ГÀа	Val

					-
-	CO	nt	١r	ານ∈	ed.

_															
Ile	Ser 130	Ala	Leu	Asn	Arg	Ser 135	Сув	Ala	Glu	Met	Val 140	Ala	Гла	Tyr	Asp
Leu 145	Leu	Val	Met	Thr	Thr 150	Gly	Arg	Ala	Thr	Ala 155	Thr	Ala	Ala	Ala	Thr 160
Glu	Ala	Tyr	Trp	Glu 165	Glu	His	Gly	Gln	Pro 170	Pro	Pro	Gly	Pro	Ser 175	Leu
Tyr	Glu	Glu	Ser 180	Ala	Ile	Arg	Gly	Lys 185	Ile	Asn	Lys	Gln	Glu 190	Asp	Lys
Val	Pro	Lys 195	Glu	Val	Gln	Glu	Ala 200	Phe	Arg	Asn	Leu	Asp 205	Ser	Thr	Ser
Ser	Leu 210	Thr	Glu	Glu	Asn	Phe 215	Gly	Lys	Pro	Asp	Ile 220	Ser	Ala	Lys	Asp
Leu 225	Arg	Asp	Ile	Met	Tyr 230	Asp	His	Leu	Pro	Gly 235	Phe	Gly	Thr	Ala	Phe 240
His	Gln	Leu	Val	Gln 245	Val	Ile	Суз	Lys	Leu 250	Gly	Lys	Asb	Asn	Ser 255	Ala
Leu	Aab	Ile	Ile 260	His	Ala	Glu	Phe	Gln 265	Ala	Ser	Leu	Ala	Glu 270	Gly	Asp
Ser	Pro	Gln 275	Суз	Ala	Leu	Ile	Gln 280	Ile	Thr	Lys	Arg	Ile 285	Pro	Ile	Phe
Gln	Asp 290	Ala	Thr	Pro	Pro	Thr 295	Ile	His	Ile	Arg	Ser 300	Arg	Gly	Asp	Ile
Pro 305	Arg	Ala	Суз	Gln	Lys 310	Ser	Leu	Arg	Pro	Val 315	Pro	Pro	Ser	Pro	Lys 320
Ile	Asp	Arg	Gly	Trp 325	Val	Сүз	Ile	Phe	Gln 330	Leu	Gln	Asp	Gly	Lys 335	Thr
Leu	Gly	Leu	Lys 340	Ile											
			о NO Н: 32												
<212	2> TY	CPE :	PRT		libu		ahola	aviru	10						
<220 <221)> FH L> NA	EATUR AME/I	RE: KEY:	mis	c_fea	iture	è								
					FION	: Co1	te d'	'Ivoi	ire e	ebola	aviru	ıs VI	P40 1	NP pi	rotein
			NCE :		_	_			_	_		_			
Met 1	Arg	Arg	Ile	Ile 5	Leu	Pro	Thr	Ala	Pro 10	Pro	Glu	Tyr	Met	Glu 15	Ala
Val	Tyr	Pro	Met 20	Arg	Thr	Met	Asn	Ser 25	Gly	Ala	Asp	Asn	Thr 30	Ala	Ser
Gly	Pro	Asn 35	Tyr	Thr	Thr	Thr	Gly 40	Val	Met	Thr	Asn	Asp 45	Thr	Pro	Ser
Asn	Ser 50	Leu	Arg	Pro	Val	Ala 55	Asp	Asb	Asn	Ile	Asp 60	His	Pro	Ser	His
Thr 65	Pro	Asn	Ser	Val	Ala 70	Ser	Ala	Phe	Ile	Leu 75	Glu	Ala	Met	Val	Asn 80
Val	Ile	Ser	Gly	Pro 85	ГЛа	Val	Leu	Met	Lys 90	Gln	Ile	Pro	Ile	Trp 95	Leu
Pro	Leu	Gly	Val 100	Ser	Asp	Gln	Lys	Thr 105	Tyr	Ser	Phe	Asp	Ser 110	Thr	Thr
Ala	Ala	Ile	Met	Leu	Ala	Ser	Tyr	Thr	Ile	Thr	His	Phe	Gly	ГЛЗ	Thr

									-
-	С	0	n	t	1	n	u	е	d

_												0011	0 111	aoa	
		115					120					125			
Ser .	Asn 130	Pro	Leu	Val	Arg	Ile 135	Asn	Arg	Leu	Gly	Pro 140	Gly	Ile	Pro	Asp
His 145	Pro	Leu	Arg	Leu	Leu 150	Arg	Ile	Gly	Asn	Gln 155	Ala	Phe	Leu	Gln	Glu 160
Phe	Val	Leu	Pro	Pro 165	Val	Gln	Leu	Pro	Gln 170	Tyr	Phe	Thr	Phe	Asp 175	Leu
Thr .	Ala	Leu	Lys 180	Leu	Ile	Thr	Gln	Pro 185	Leu	Pro	Ala	Ala	Thr 190	Trp	Thr
Asp	Glu	Thr 195	Pro	Ala	Val	Ser	Thr 200	Gly	Thr	Leu	Arg	Pro 205	Gly	Ile	Ser
Phe	His 210	Pro	Lys	Leu	Arg	Pro 215	Ile	Leu	Leu	Pro	Gly 220	Arg	Ala	Gly	LYa
Lys 225	Gly	Ser	Asn	Ser	Asp 230	Leu	Thr	Ser	Pro	Asp 235	Lys	Ile	Gln	Ala	Ile 240
Met .	Asn	Phe	Leu	Gln 245	Asp	Leu	Lys	Ile	Val 250	Pro	Ile	Asp	Pro	Thr 255	Lys
Asn	Ile	Met	Gly 260	Ile	Glu	Val	Pro	Glu 265	Leu	Leu	Val	His	Arg 270	Leu	Thr
Gly	Lys	Lys 275	Thr	Thr	Thr	Lys	Asn 280	Gly	Gln	Pro	Ile	Ile 285	Pro	Ile	Leu
Leu	Pro 290	Lys	Tyr	Ile	Gly	Leu 295	Asp	Pro	Leu	Ser	Gln 300	Gly	Asp	Leu	Thr
Met 305	Val	Ile	Thr	Gln	Asp 310	Сүз	Asp	Ser	Суз	His 315	Ser	Pro	Ala	Ser	Leu 320
Pro	Pro	Val	Asn	Glu 325	ГÀа										
<210 <211	> LE	INGTH	H: 6'												
<212 <213				Bund	libu	qyo e	∋bola	aviru	រទ						
<220 <221	> FE	ATUR	₹E :												
<223								[voi:	re ek	oola	viru	s GP	NP]	prot	ein
<400	> SI	QUEI	ICE :	14											
Met 1	Gly	Ala	Ser	Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Glu	Arg	Phe	Arg 15	Lys
Thr	Ser	Phe	Phe 20	Val	Trp	Val	Ile	Ile 25	Leu	Phe	His	Lys	Val 30	Phe	Ser
Ile	Pro	Leu 35	Gly	Val	Val	His	Asn 40	Asn	Thr	Leu	Gln	Val 45	Ser	Asp	Ile
Asp	Lys 50	Phe	Val	СЛа	Arg	Asp 55	Lys	Leu	Ser	Ser	Thr 60	Ser	Gln	Leu	Lys
Ser 65	Val	Gly	Leu	Asn	Leu 70	Glu	Gly	Asn	Gly	Val 75	Ala	Thr	Asp	Val	Pro 80
Thr .	Ala	Thr	Lys	Arg 85	Trp	Gly	Phe	Arg	Ala 90	Gly	Val	Pro	Pro	Lys 95	Val
Val.	Asn	Сув	Glu 100	Ala	Gly	Glu	Trp	Ala 105	Glu	Asn	Суз	Tyr	Asn 110	Leu	Ala
Ile	Lys	Lys 115	Val	Aab	Gly	Ser	Glu 120	Сүз	Leu	Pro	Glu	Ala 125	Pro	Glu	Gly

		-
-cont	-ini	led

											-	con	tin	ued	
Val	Arg 130	Asp	Phe	Pro	Arg	Суз 135	Arg	Tyr	Val	His	Lys 140	Val	Ser	Gly	Thr
Gly 145	Pro	Суз	Pro	Gly	Gly 150	Leu	Ala	Phe	His	Lys 155	Glu	Gly	Ala	Phe	Phe 160
Leu	Tyr	Asp	Arg	Leu 165	Ala	Ser	Thr	Ile	Ile 170	Tyr	Arg	Gly	Thr	Thr 175	Phe
Ala	Glu	Gly	Val 180	Ile	Ala	Phe	Leu	Ile 185	Leu	Pro	Lys	Ala	Arg 190	Lys	Asp
Phe	Phe	Gln 195	Ser	Pro	Pro	Leu	His 200	Glu	Pro	Ala	Asn	Met 205	Thr	Thr	Asp
Pro	Ser 210	Ser	Tyr	Tyr	His	Thr 215	Thr	Thr	Ile	Asn	Tyr 220	Val	Val	Asp	Asn
Phe 225	Gly	Thr	Asn	Thr	Thr 230	Glu	Phe	Leu	Phe	Gln 235	Val	Asp	His	Leu	Thr 240
Tyr	Val	Gln	Leu	Glu 245	Ala	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Val	Leu 255	Leu
Asn	Glu	Thr	Ile 260	Tyr	Ser	Asp	Asn	Arg 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Lys
Leu	Ile	Trp 275	Lys	Ile	Asn	Pro	Thr 280	Val	Asp	Thr	Ser	Met 285	Gly	Glu	Trp
Ala	Phe 290	Trp	Glu	Asn	ГÀа	Lys 295	Asn	Phe	Thr	Lys	Thr 300	Leu	Ser	Ser	Glu
Glu 305	Leu	Ser	Phe	Val	Pro 310	Val	Pro	Glu	Thr	Gln 315	Asn	Gln	Val	Leu	Asp 320
Thr	Thr	Ala	Thr	Val 325	Ser	Pro	Pro	Ile	Ser 330	Ala	His	Asn	His	Ala 335	Ala
Glu	Asp	His	Lys 340	Glu	Leu	Val	Ser	Glu 345	Asp	Ser	Thr	Pro	Val 350	Val	Gln
Met	Gln	Asn 355	Ile	Lys	Gly	Lys	Asp 360	Thr	Met	Pro	Thr	Thr 365	Val	Thr	Gly
Val	Pro 370	Thr	Thr	Thr	Pro	Ser 375	Pro	Phe	Pro	Ile	Asn 380	Ala	Arg	Asn	Thr
Asp 385	His	Thr	ГÀа	Ser	Phe 390	Ile	Gly	Leu	Glu	Gly 395	Pro	Gln	Glu	Asp	His 400
Ser	Thr	Thr	Gln	Pro 405	Ala	ГÀа	Thr	Thr	Ser 410	Gln	Pro	Thr	Asn	Ser 415	Thr
Glu	Ser	Thr	Thr 420	Leu	Asn	Pro	Thr	Ser 425	Glu	Pro	Ser	Ser	Arg 430	Gly	Thr
Gly	Pro	Ser 435	Ser	Pro	Thr		Pro 440		Thr	Thr	Glu	Ser 445	His	Ala	Glu
Leu	Gly 450	Lys	Thr	Thr	Pro	Thr 455	Thr	Leu	Pro	Glu	Gln 460	His	Thr	Ala	Ala
Ser 465	Ala	Ile	Pro	Arg	Ala 470	Val	His	Pro	Asp	Glu 475	Leu	Ser	Gly	Pro	Gly 480
Phe	Leu	Thr	Asn	Thr 485	Ile	Arg	Gly	Val	Thr 490	Asn	Leu	Leu	Thr	Gly 495	Ser
Arg	Arg	Lys	Arg 500	Arg	Asp	Val	Thr	Pro 505	Asn	Thr	Gln	Pro	Lys 510	Суз	Asn
Pro	Asn	Leu 515	His	Tyr	Trp	Thr	Ala 520	Leu	Asp	Glu	Gly	Ala 525	Ala	Ile	Gly
Leu	Ala	Trp	Ile	Pro	Tyr	Phe	Gly	Pro	Ala	Ala	Glu	Gly	Ile	Tyr	Thr

											-	con	ιш	ueu	
	530					535					540				
Glu 545	Gly	Ile	Met	Glu	Asn 550	Gln	Asn	Gly	Leu	Ile 555	Суз	Gly	Leu	Arg	Gln 560
Leu	Ala	Asn	Glu	Thr 565	Thr	Gln	Ala	Leu	Gln 570	Leu	Phe	Leu	Arg	Ala 575	Thr
Thr	Glu	Leu	Arg 580	Thr	Phe	Ser	Ile	Leu 585	Asn	Arg	Lys	Ala	Ile 590	Asp	Phe
Leu	Leu	Gln 595	Arg	Trp	Gly	Gly	Thr 600	Суз	His	Ile	Leu	Gly 605	Pro	Asp	Сүз
Сүз	Ile 610	Glu	Pro	Gln	Asp	Trp 615	Thr	Lys	Asn	Ile	Thr 620	Aap	Lys	Ile	Asp
Gln 625	Ile	Ile	His	Asp	Phe 630	Val	Asp	Asn	Asn	Leu 635	Pro	Asn	Gln	Asn	Asp 640
Gly	Ser	Asn	Trp	Trp 645	Thr	Gly	Trp	Гла	Gln 650	Trp	Val	Pro	Ala	Gly 655	Ile
Gly	Ile	Thr	Gly 660	Val	Ile	Ile	Ala	Ile 665	Ile	Ala	Leu	Leu	Cys 670	Ile	Суз
Гла	Phe	Met 675	Leu												
<22	1> N2	EATUF AME/H THER	KEY:							-					
<40		EQUE	NCE :	15										-	
<40 Met 1	Gly	Ala	NCE: Ser	15 Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Glu	Arg	Phe	Arg 15	Lys
<40 Met 1	Gly		NCE: Ser	15 Gly 5	Ile	Leu	Gln	Leu	Pro 10	Arg	Glu	Arg	Phe	Arg 15	Lys
<40 Met 1 Thr	Gly Ser	Ala	NCE: Ser Phe 20	15 Gly 5 Val	Ile Trp	Leu Val	Gln Ile	Leu Ile 25	Pro 10 Leu	Arg Phe	Glu His	Arg Lys	Phe Val 30	Arg 15 Phe	Lys Ser
<40 Met 1 Thr Ile	Gly Ser Pro	Ala Phe Leu	NCE: Ser Phe 20 Gly	15 Gly 5 Val Val	Ile Trp Val	Leu Val His	Gln Ile Asn 40	Leu Ile 25 Asn	Pro 10 Leu Thr	Arg Phe Leu	Glu His Gln	Arg Lys Val 45	Phe Val 30 Ser	Arg 15 Phe Asp	Lys Ser Ile
<40 Met 1 Thr Ile Asp	Gly Ser Pro Lys 50	Ala Phe Leu 35	NCE: Ser Phe 20 Gly Val	15 Gly 5 Val Val Cys	Ile Trp Val Arg	Leu Val His Asp 55	Gln Ile Asn 40 Lys	Leu 11e 25 Asn Leu	Pro 10 Leu Thr Ser	Arg Phe Leu Ser	Glu His Gln Thr 60	Arg Lys Val 45 Ser	Phe Val 30 Ser Gln	Arg 15 Phe Asp Leu	Lys Ser Ile Lys
<40 Met 1 Thr Ile Asp Ser 65	Gly Ser Pro Lys 50 Val	Ala Phe Leu 35 Phe	NCE: Ser Phe 20 Gly Val Leu	15 Gly 5 Val Val Cys Asn	Ile Trp Val Arg Leu 70	Leu Val His Asp 55 Glu	Gln Ile Asn 40 Lys Gly	Leu 11e 25 Asn Leu Asn	Pro 10 Leu Thr Ser Gly	Arg Phe Leu Ser Val 75	Glu His Gln Thr 60 Ala	Arg Lys Val 45 Ser Thr	Phe Val 30 Ser Gln Asp	Arg 15 Phe Asp Leu Val	Lys Ser Ile Lys Pro 80
<40 Met 1 Thr Ile Asp Ser 65 Thr	Gly Ser Pro Lys 50 Val Ala	Ala Phe Leu 35 Phe Gly	NCE: Ser Phe 20 Gly Val Leu Lys	15 Gly 5 Val Val Cys Asn Assn	Ile Trp Val Arg Leu 70 Trp	Leu Val His S5 Glu Gly	Gln Ile Asn 40 Lys Gly Phe	Leu 25 Asn Leu Asn	Pro 10 Leu Thr Ser Gly Ala 90	Arg Phe Leu Ser Val 75 Gly	Glu His Gln Thr 60 Ala Val	Arg Lys Val 45 Ser Thr Pro	Phe Val 30 Ser Gln Asp Pro	Arg 15 Phe Asp Leu Val Lys 95	Lys Ser Ile Lys Pro 80 Val
<400 Met 1 Thr Ile Asp Ser 65 Thr Val	Gly Ser Pro Lys 50 Val Ala Asn	Ala Phe Leu 35 Phe Gly Thr	NCE: Ser Phe 20 Gly Val Leu Lys Glu	15 Gly 5 Val Cys Asn Arg 85 Ala	Ile Trp Val Arg Leu 70 Trp Gly	Leu Val His 55 Glu Gly Glu	Gln Ile Asn 40 Lys Gly Phe Trp	Leu 25 Asn Leu Asn Arg Ala	Pro 10 Leu Thr Ser Gly Ala 90 Glu	Arg Phe Leu Ser Val 75 Gly Asn	Glu His Gln Thr 60 Ala Val Cys	Arg Lys Val 45 Ser Thr Pro Tyr	Phe Val 30 Ser Gln Asp Pro Asn 110	Arg 15 Phe Asp Leu Val Lys 95 Leu	Lys Ser Ile Lys Pro 80 Val Ala
<400 Met 1 Thr Ile Asp 65 Thr Val Ile	Gly Ser Pro Lys 50 Val Ala Asn Lys	Ala Phe 35 Phe Gly Thr Cys Lys	NCE: Ser Phe 20 Gly Val Leu Lys Glu 100 Val	15 Gly 5 Val Cys Asn Asp Asp	Ile Trp Val Arg Leu 70 Trp Gly	Leu Val His S5 Glu Gly Glu Ser	Gln Ile Asn 40 Lys Gly Phe Trp Glu 120	Leu 25 Asn Leu Asn Arg Ala 105 Cys	Pro 10 Leu Thr Ser Gly Ala 90 Glu Leu	Arg Phe Leu Ser Val 75 Gly Asn Pro	Glu His Gln Thr 60 Ala Val Cys Glu	Arg Lys Val 45 Ser Thr Pro Tyr Ala 125	Phe Val 30 Ser Gln Asp Pro Asn 110 Pro	Arg 15 Phe Asp Leu Val Lys 95 Leu Glu	Lys Ser Ile Lys Pro 80 Val Ala Gly
<40 Met 1 Thr Ile Asp 65 Thr Val Ile Val	Gly Ser Pro Lys 50 Val Ala Asn Lys Arg 130	Ala Phe Leu 35 Phe Gly Thr Cys Lys 115	NCE: Ser Phe 20 Gly Val Leu Lys Glu 100 Val Phe	15 Gly Val Val Cys Asn Arg Ala Asp Pro	Ile Trp Val Arg Leu 70 Trp Gly Gly Arg	Leu Val His Glu Gly Glu Ser Cys 135	Gln Ile Asn 40 Lys Gly Phe Trp Glu 120 Arg	Leu 11e 25 Asn Leu Asn Arg Ala 105 Cys Tyr	Pro 10 Leu Thr Ser Gly Ala 90 Glu Leu Val	Arg Phe Leu Ser Val 75 Gly Asn Pro His	Glu His Gln Thr 60 Ala Val Cys Glu Lys 140	Arg Lys Val 45 Ser Thr Pro Tyr Tyr Ala 125 Val	Phe Val 30 Ser Gln Asp Pro Asn 110 Pro Ser	Arg 15 Phe Asp Leu Val Lys 95 Leu Glu Gly	Lys Ser Ile Lys Pro 80 Val Ala Gly Thr
<40 Met 1 Thr Ile Asp Ser 65 Thr Val Ile Val Gly 145	Gly Ser Pro Val Ala Asn Lys Lys Arg 130 Pro	Ala Phe Leu 35 Phe Gly Thr Cys Lys 115 Asp	NCE: Ser Phe 20 Gly Val Leu Lys Glu 100 Val Phe Pro	15 Gly 5 Val Cys Asn Asp Ala Pro Gly	Ile Trp Val Arg Leu Cly Gly Arg Gly 150	Leu Val His 55 Glu Gly Gly Ser Cys 135 Leu	Gln Ile Asn 40 Gly Phe Trp Glu 120 Arg Ala	Leu 11e 25 Asn Leu Asn Arg 105 Cys Tyr Phe	Pro 10 Leu Thr Ser Gly Ala 90 Glu Leu Val His	Arg Phe Leu Ser Val 75 Gly Asn Pro His Lys 155	Glu His Gln Thr 60 Ala Val Cys Glu Lys 140 Glu	Arg Lys Val 45 Ser Thr Pro Tyr Ala 125 Val Gly	Phe Val Ser Gln Asp Pro Asn 110 Pro Ser Ala	Arg 15 Phe Asp Leu Val Lys 95 Leu Glu Gly Phe	Lys Ser Ile Lys Pro 80 Val Ala Gly Thr Phe 160

-cont	inued

Phe											-				
	Phe	Gln 195	Ser	Pro	Pro	Leu	His 200	Glu	Pro	Ala	Asn	Met 205	Thr	Thr	Asp
Pro	Ser 210	Ser	Tyr	Tyr	His	Thr 215	Thr	Thr	Ile	Asn	Tyr 220	Val	Val	Asp	Asn
Phe 225	Gly	Thr	Asn	Thr	Thr 230	Glu	Phe	Leu	Phe	Gln 235	Val	Asp	His	Leu	Thr 240
Tyr	Val	Gln	Leu	Glu 245	Ala	Arg	Phe	Thr	Pro 250	Gln	Phe	Leu	Val	Leu 255	Leu
Asn	Glu	Thr	Ile 260	Tyr	Ser	Asp	Asn	Arg 265	Arg	Ser	Asn	Thr	Thr 270	Gly	Lys
Leu	Ile	Trp 275	Lys	Ile	Asn	Pro	Thr 280	Val	Asp	Thr	Ser	Met 285	Gly	Glu	Trp
Ala	Phe 290	Trp	Glu	Asn	Lys	Lys 295	Thr	Ser	Gln	Lys	Pro 300	Phe	Gln	Val	Lys
Ser 305	Суз	Leu	Ser	Tyr	Leu 310	Tyr	Gln	Lys	Pro	Arg 315	Thr	Arg	Ser	Leu	Thr 320
Arg	Gln	Arg	Arg	Ser 325	Leu	Leu	Pro	Ser	Pro 330	Pro	Thr	Thr	Thr	Gln 335	Pro
Гла	Thr	Thr	Lys 340	Asn	Trp	Phe	Gln	Arg 345	Ile	Pro	Leu	Gln	Trp 350	Phe	Arg
Сүз	Lys	Thr 355	Ser	Arg	Glu	Arg	Thr 360	Gln	Суз	Gln	Pro	Gln 365			
	2 > T 3 > OF														
<22 <22 <22	0> FI 1> NA 3> O	EATUR AME/H THER	RE: CEY: INFO	mis ORMA	c_fea	iture	è	aviru Evoin		oolav	/irus	s SS	GP NI	? pro	otein
<22 <22 <22	0> FH 1> NA	EATUR AME/H THER	RE: CEY: INFO	mis ORMA	c_fea	iture	è			olav	/iru:	s SS(GP NI	? pro	otein
<22 <22 <22 <40	0> FI 1> NA 3> O	EATUH AME/H THER EQUEI	RE: (EY: INF(ICE:	miso DRMA 16	c_fea TION	ture : Cot	e te di	[voi]	re ek					-	
<22 <22 <22 <40 Met 1	0> FI 1> NA 3> O' 0> SI	EATUF AME/I THER EQUEN Ala	RE: (EY: INF(NCE: Ser	miso DRMA 16 Gly 5	c_fea FION Ile	iture : Cot Leu	e di Gln	[voi:	re ek Pro 10	Arg	Glu	Arg	Phe	Arg 15	Lys
<22 <22 <22 <40 Met 1 Thr	0> FI 1> NA 3> O 0> SI Gly	EATUF AME/H FHER EQUEN Ala Phe	RE: (EY: INFO NCE: Ser Phe 20	miso DRMA 16 Gly 5 Val	c_fea NION Ile Trp	ture : Cot Leu Val	gln Ile	Leu Ile 25	re ek Pro 10 Leu	Arg Phe	Glu His	Arg Lys	Phe Val 30	Arg 15 Phe	Lys Ser
<22 <22 <22 <40 Met 1 Thr Ile	0> FH 1> NX 3> 07 0> SH Gly Ser	EATUR AME/I THER EQUEN Ala Phe Leu 35	RE: (EY: INF(NCE: Ser Phe 20 Gly	miso DRMA 16 Gly 5 Val Val	c_fea FION Ile Trp Val	Leu Val	Gln Ile Asn 40	Leu Leu 11e 25 Asn	Pro 10 Leu Thr	Arg Phe Leu	Glu His Gln	Arg Lys Val 45	Phe Val 30 Ser	Arg 15 Phe Asp	Lys Ser Ile
<22 <22 <22 <40 Met 1 Thr Ile Asp	D> FH 1> NA 3> OT D> SH Gly Ser Pro Lys	EATUR AME/I THER EQUEN Ala Phe Leu 35 Phe	E: (EY: INF(VCE: Ser Phe 20 Gly Val	miso DRMA 16 Gly 5 Val Val Cys	Ile Trp Val	Leu Val Asp 55	Gln Ile Asn 40 Lys	[voi] Leu Ile 25 Asn Leu	Pro 10 Leu Thr Ser	Arg Phe Leu Ser	Glu His Gln Thr 60	Arg Lys Val 45 Ser	Phe Val 30 Ser Gln	Arg 15 Phe Asp Leu	Lys Ser Ile Lys
<222 <222 <40 Met 1 Thr Ile Asp Ser 65	0> FI 1> NA 3> 0 0> SI Gly Ser Pro Lys 50	EATUH AME/HER EQUEN Ala Phe Leu 35 Phe Gly	RE: (EY: INFC INFC Ser Phe 20 Gly Val Leu	miso DRMA 16 Gly 5 Val Val Cys Asn	C_fea TION Ile Trp Val Arg Leu 70	ture: Cot Leu Val His 55 Glu	ce d Gln Ile Asn 40 Lys Gly	Ivoii Leu Ile 25 Asn Leu Asn	Pro 10 Leu Thr Ser Gly	Arg Phe Leu Ser Val 75	Glu His Gln Thr 60 Ala	Arg Lys Val 45 Ser Thr	Phe Val 30 Ser Gln Asp	Arg 15 Phe Asp Leu Val	Lys Ser Ile Lys Pro 80
<222 <222 <400 Met 1 Thr Ile Asp Ser 65 Thr	D> FH 1> NA 3> O' D> SH Gly Ser Pro Lys 50 Val	EATUH AME/HER CQUER Ala Phe Leu 35 Phe Gly Thr Cys	RE: KEY: INFC JCE: Ser Phe 20 Gly Val Leu Lys	misso DRMA: 16 Gly 5 Val Val Cys Asn Asg 85	C_fea TION Ile Trp Val Arg Leu 70 Trp	ture Cot Leu Val His Asp 55 Glu Gly	Gln Ile Asn 40 Lys Gly Phe	Ivoii Leu Ile 25 Asn Leu Asn Arg	Pro 10 Leu Thr Ser Gly Ala 90	Arg Phe Leu Ser Val 75 Gly	Glu His Gln Thr 60 Ala Val	Arg Lys Val 45 Ser Thr Pro	Phe Val 30 Ser Gln Asp Pro	Arg 15 Phe Asp Leu Val Lys 95	Lys Ser Ile Lys Pro 80 Val
<222 <222 <400 Met 1 Thr Ile Asp Ser 65 Thr Val	<pre>D> FH 1> NN 3> O' D> SE Gly Ser Pro Lys 50 Val Ala Asn Lys</pre>	EATUH AME/I THER EQUED Ala Phe Leu 35 Phe Gly Thr Cys	RE: (EY: INFC VCE: Ser Phe 20 Gly Val Leu Lys Glu 100	mis ORMA: 16 Gly 5 Val Val Cys Asn Arg 85 Ala	C_fear TION Ile Trp Val Arg Leu 70 Trp Gly	tture Cot Leu Val His Asp 55 Glu Gly Glu	Gln Ile Asn 40 Lys Gly Phe Trp	Leu Ile 25 Asn Leu Asn Arg Ala 105	Pro 10 Leu Thr Ser Gly Ala 90 Glu	Arg Phe Leu Ser Val 75 Gly Asn	Glu His Gln Thr 60 Ala Val Cys	Arg Lys Val 45 Ser Thr Pro Tyr	Phe Val 30 Ser Gln Asp Pro Asn 110	Arg 15 Phe Asp Leu Val Lys 95 Leu	Lys Ser Ile Lys Pro 80 Val Ala
<pre><22 <22 <22 <40 Met 1 Thr Ile Asp Ser 65 Thr Val Ile</pre>	<pre>D> FH 1> NN 3> O' D> SE Gly Ser Pro Lys 50 Val Ala Asn Lys</pre>	EATURNE,/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I	RE: (EY: INFO JCE: Ser Phe 20 Gly Val Leu Lys Glu 100 Val	miss DRMA: 16 Gly 5 Val Val Cys Asn Arg 85 Ala Asp	c_fez TION Ile Trp Val Arg Leu 70 Trp Gly Gly	turee Cot Leu Val His S5 Glu Gly Glu Ser	Gln Gln Ile Asn 40 Lys Gly Phe Trp Glu 120	Leu Ile 25 Asn Leu Asn Arg Ala 105 Cys	Pro 10 Leu Thr Ser Gly Ala 90 Glu Leu	Arg Phe Leu Ser Val 75 Gly Asn Pro	Glu His Gln Thr 60 Ala Val Cys Glu	Arg Lys Val 45 Ser Thr Pro Tyr Ala 125	Phe Val 30 Ser Gln Asp Pro Asn 110 Pro	Arg 15 Phe Asp Leu Val Lys 95 Leu Glu	Lys Ser Ile Lys Pro 80 Val Ala Gly
<pre><22 <22 <22 <40 Met 1 Thr Ile Asp Ser 65 Thr Val Ile Val</pre>	<pre>>> FFI 1> NN 1> NN 3> O' Sol Gly Ser Pro Lys 50 Val Ala Asn Lys Arg</pre>	EATURNE / I / I / I / I / I / I / I / I / I /	RE: (EY: INFC JCE: Ser Phe 20 Gly Val Leu Lys Glu 100 Val Phe	misc DRMA 16 Gly 5 Val Val Cys Asn Arg 85 Ala Asp Pro	C_fess TION Ile Trp Val Arg Leu 70 Trp Gly Gly Arg	ture: Cot Leu Val His S5 Glu Gly Glu Ser Cys 135	Gln Ile Asn 40 Lys Gly Phe Trp Glu 120 Arg	Ivoii Leu 25 Asn Leu Asn Arg 105 Cys Tyr	Pro 10 Leu Thr Ser Gly Glu Leu Val	Arg Phe Leu Ser Val 75 Gly Asn Pro His	Glu His Gln Thr 60 Ala Val Cys Glu Lys 140	Arg Lys Val Ser Thr Pro Tyr Ala 125 Val	Phe Val 30 Ser Gln Asp Pro Asn 110 Pro Ser	Arg 15 Phe Asp Leu Val Lys 95 Leu Glu Gly	Lys Ser Ile Lys Pro 80 Val Ala Gly Thr

-continued

Ala Glu Gly Val Ile Ala Phe Leu Ile Leu Pro Lys Ala Arg Lys Asp 180 185 190 Phe Phe Gln Ser Pro Pro Leu His Glu Pro Ala Asn Met Thr Asp 195 200 205 Pro Ser Ser Tyr Tyr His Thr Thr Thr Ile Asn Tyr Val Val Asp Asn 210 215 220 Phe Gly Thr Asn Thr Thr Glu Phe Leu Phe Gln Val Asp His Leu Thr 240 225 230 235 Tyr Val Gln Leu Glu Ala Arg Phe Thr Pro Gln Phe Leu Val Leu Leu 245 250 255 Asn Glu Thr Ile Tyr Ser Asp Asn Arg Arg Ser Asn Thr Thr Gly Lys 260 265 270 Leu Ile Trp Lys Ile Asn Pro Thr Val Asp Thr Ser Met Gly Glu Trp 275 280 285 Ala Phe Trp Glu Asn Lys Lys Leu His Lys Asn Pro Phe Lys 290 295 300 <210> SEO ID NO 17 <211> LENGTH: 289 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Cote dIvoire ebolavirus VP30 NP protein <400> SEQUENCE: 17 Met Glu Val Val His Glu Arg Gly Arg Ser Arg Ile Ser Arg Gln Asn 1 5 10 15 Thr Arg Asp Gly Pro Ser His Leu Val Arg Ala Arg Ser Ser Arg 20 25 30 Ala Ser Tyr Arg Ser Glu Tyr His Thr Pro Arg Ser Ala Ser Gln Ile 35 40 45 Arg Val Pro Thr Val Phe His Arg Lys Lys Thr Asp Leu Leu Thr Val 50 55 60
 Pro
 Pro
 Ala
 Pro
 Lys
 Asp
 Val
 Cys
 Pro
 Thr
 Leu
 Lys
 Lys
 Gly
 Phe
 Leu

 65
 70
 75
 80
 Cys Asp Ser Asn Phe Cys Lys Lys Asp His Gln Leu Glu Ser Leu Thr 85 90 95 Asp Arg Glu Leu Leu Leu Leu Ile Ala Arg Lys Thr Cys Gly Ser Thr 100 105 110 Glu Gln Leu Ser Ile Val Ala Pro Lys Asp Ser Arg Leu Ala Asn 115 120 125 125 Pro Ile Ala Glu Asp Phe Gln Gln Lys Asp Gly Pro Lys Val Thr Leu 130 135 140 Ser Met Leu Ile Glu Thr Ala Glu Tyr Trp Ser Lys Gln Asp Ile Lys 145 150 155 160 Asn Ile Asp Asp Ser Arg Leu Arg Ala Leu Leu Thr Leu Cys Ala Val 165 170 175 Met Thr Arg Lys Phe Ser Lys Ser Gln Leu Ser Leu Leu Cys Glu Ser 180 185 190 His Leu Arg Arg Glu Gly Leu Gly Gln Asp Gln Ser Glu Ser Val Leu 195 200 205

Glu Val Tyr Gln Arg Leu His Ser Asp Lys Gly Gly Asn Phe Glu Ala

-continued 210 215 220 Ala Leu Trp Gln Gln Trp Asp Arg Gln Ser Leu Ile Met Phe Ile Thr 225 230 235 Ala Phe Leu Asn Ile Ala Leu Gln Leu Pro Cys Glu Ser Ser Val 250 245 255 Val Ile Ser Gly Leu Arg Met Leu Ile Pro Gln Ser Glu Ala Thr Glu 260 265 270 Val Val Thr Pro Ser Glu Thr Cys Thr Trp Ser Glu Gly Gly Ser Ser 275 280 285 His <210> SEQ ID NO 18 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Cote dIvoire ebolavirus VP24 NP protein <400> SEQUENCE: 18 Met Ala Lys Ala Thr Gly Arg Tyr Asn Leu Ile Ser Pro Lys Asp 1 5 10 15 Leu Glu Lys Gly Leu Val Leu Asn Asp Leu Cys Thr Leu Ser Val Ala 20 25 30 Gln Thr Val Gln Gly Trp Lys Val Thr Trp Ala Gly Ile Glu Phe Asp 35 40 45 Val Thr Gln Lys Gly Met Ala Leu Leu His Arg Leu Lys Thr Ser Asp 50 55 60
 Phe
 Ala
 Pro
 Ala
 Trp
 Ser
 Met
 Thr
 Arg
 Asn
 Leu
 Phe
 Pro
 His
 Leu

 65
 70
 75
 80
 Gln Asn Pro Asn Ser Thr Ile Glu Ser Pro Leu Trp Ala Leu Arg Val 85 90 95 Ile Leu Ala Ala Gly Ile Gln Asp Gln Leu Ile Asp Gln Ser Leu Ile 100 105 110 Glu Pro Leu Ala Gly Ala Leu Gly Leu Ile Ala Asp Trp Leu Leu Thr 115 120 125 Thr Gly Thr Asn His Phe Gln Met Arg Thr Gln Gln Ala Lys Glu Gln 130 135 140 Leu Ser Leu Lys Met Leu Ser Leu Val Arg Ser Asn Ile Leu Lys Phe 145 150 155 160 145 Ile Asn Gln Leu Asp Ala Leu His Val Val Asn Tyr Asn Gly Leu Leu 165 170 175 Ser Ser Ile Glu Ile Gly Thr Lys Ser His Thr Ile Ile Ile Thr Arg 180 190 185 Thr Asn Met Gly Phe Leu Val Glu Leu Gln Glu Pro Asp Lys Ser Ala 195 200 205 Met Asn Thr Arg Lys Pro Gly Pro Val Lys Phe Ser Leu Leu His Glu 210 215 220 Ser Thr Leu Lys Thr Leu Ala Lys Lys Pro Ala Thr Gln Met Gln Ala 225 230 235 240 Leu Ile Leu Glu Phe Asn Ser Ser Leu Ala Ile 245 250

-continued

<210> SEQ ID NO 19 <211> LENGTH: 2210 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: Cote dIvoire ebolavirus L NP protein <400> SEQUENCE: 19
 Met Ala Thr Gln His Thr Gln Tyr Pro Asp Ala Arg Leu Ser Ser Pro

 1
 5
 10
 15
 5 Ile Val Leu Asp Gln Cys Asp Leu Val Thr Arg Ala Cys Gly Leu Tyr20 25 30 Ser Ala Tyr Ser Leu Asn Pro Gln Leu Lys Asn Cys Arg Leu Pro Lys 35 40 45 His Ile Tyr Arg Leu Lys Tyr Asp Thr Thr Val Thr Glu Phe Leu Ser 50 55 60 Asp Val Pro Val Ala Thr Leu Pro Ala Asp Phe Leu Val Pro Thr Phe 65 70 75 80 Leu Arg Thr Leu Ser Gly Asn Gly Ser Cys Pro Ile Asp Pro Lys Cys 85 90 95 Ser Gln Phe Leu Glu Glu Ile Val Asn Tyr Thr Leu Gln Asp Ile Arg 100 105 110 Phe Leu Asn Tyr Tyr Leu Asn Arg Ala Gly Val His Asn Asp His Val 115 120 125 Asp Arg Asp Phe Gly Gln Lys Ile Arg Asn Leu Ile Cys Asp Asn Glu 130 135 140 135 Val Leu His Gln Met Phe His Trp Tyr Asp Leu Ala Ile Leu Ala Arg 145 150 155 160 Arg Gly Arg Leu Asn Arg Gly Asn Asn Arg Ser Thr Trp Phe Ala Ser 175 165 170 Asp Asn Leu Val Asp Ile Leu Gly Tyr Gly Asp Tyr Ile Phe Trp Lys 180 185 190 Ile Pro Leu Ser Leu Leu Pro Val Asp Thr Gln Gly Leu Pro His Ala 195 200 205 Ala Lys Asp Trp Tyr His Glu Ser Val Phe Lys Glu Ala Ile Gln Gly 210 215 220 His Thr His Ile Val Ser Ile Ser Thr Ala Asp Val Leu Ile Met Cys225230230235240 Lys Asp Ile Ile Thr Cys Arg Phe Asn Thr Leu Leu Ile Ala Ala Val 245 250 Ala Asn Leu Glu Asp Ser Val His Ser Asp Tyr Pro Leu Pro Glu Thr 260 265 270 Val Ser Asp Leu Tyr Lys Ala Gly Asp Tyr Leu Ile Ser Leu Leu Gly 275 280 285 Ser Glu Gly Tyr Lys Val Ile Lys Phe Leu Glu Pro Leu Cys Leu Ala 295 300 290 Lys Ile Gln Leu Cys Ser Asn Tyr Thr Glu Arg Lys Gly Arg Phe Leu 305 310 315 320 315 Thr Gln Met His Leu Ala Val Asn His Thr Leu Glu Glu Leu Thr Gly 325 330 335 Ser Arg Glu Leu Arg Pro Gln Gln Ile Arg Lys Val Arg Glu Phe His 340 345 350

inued

												COIL	CIII	leu	
Gln	Met	Leu 355	Ile	Asn	Leu	Lys	Ala 360	Thr	Pro	Gln	Gln	Leu 365	Cys	Glu	Leu
Phe	Ser 370	Val	Gln	ГЛЗ	His	Trp 375	Gly	His	Pro	Val	Leu 380	His	Ser	Glu	Lys
Ala 385	Ile	Gln	Lys	Val	772 730	Lys	His	Ala	Thr	Val 395	Ile	Lys	Ala	Leu	Arg 400
Pro	Ile	Ile	Ile	Phe 405	Glu	Thr	Tyr	Сув	Val 410	Phe	Lys	Tyr	Ser	Ile 415	Ala
ГЛа	His	Tyr	Phe 420	Asp	Ser	Gln	Gly	Thr 425	Trp	Tyr	Ser	Val	Thr 430	Ser	Asp
Arg	Суз	Leu 435	Thr	Pro	Gly	Leu	Ser 440	Ser	Tyr	Ile	Lys	Arg 445	Asn	Gln	Phe
Pro	Pro 450	Leu	Pro	Met	Ile	Lys 455	Glu	Leu	Leu	Trp	Glu 460	Phe	Tyr	His	Leu
Asp 465	His	Pro	Pro	Leu	Phe 470	Ser	Thr	Lys	Val	Ile 475	Ser	Asp	Leu	Ser	Ile 480
Phe	Ile	Lys	Asp	Arg 485	Ala	Thr	Ala	Val	Glu 490	Lys	Thr	Сүз	Trp	Asp 495	Ala
Val	Phe	Glu	Pro 500	Asn	Val	Leu	Gly	Tyr 505	Asn	Pro	Pro	Asn	Lys 510	Phe	Ala
Thr	Lys	Arg 515	Val	Pro	Glu	Gln	Phe 520	Leu	Glu	Gln	Glu	Asn 525	Phe	Ser	Ile
Glu	Ser 530	Val	Leu	His	Tyr	Ala 535	Gln	Arg	Leu	Glu	Tyr 540	Leu	Leu	Pro	Glu
Tyr 545	Arg	Asn	Phe	Ser	Phe 550	Ser	Leu	Lys	Glu	Lys 555	Glu	Leu	Asn	Ile	Gly 560
Arg	Ala	Phe	Gly	Lys 565	Leu	Pro	Tyr	Pro	Thr 570	Arg	Asn	Val	Gln	Thr 575	Leu
Сүз	Glu	Ala	Leu 580	Leu	Ala	Asp	Gly	Leu 585	Ala	Lys	Ala	Phe	Pro 590	Ser	Asn
Met	Met	Val 595	Val	Thr	Glu	Arg	Glu 600	Gln	Lys	Glu	Ser	Leu 605	Leu	His	Gln
Ala	Ser 610	Trp	His	His	Thr	Ser 615	Asp	Aab	Phe	Gly	Glu 620	Asn	Ala	Thr	Val
Arg 625	Gly	Ser	Ser	Phe	Val 630	Thr	Asp	Leu	Glu	Lys 635	Tyr	Asn	Leu	Ala	Phe 640
Arg	Tyr	Glu	Phe	Thr 645	Ala	Pro	Phe	Ile	Glu 650	Tyr	Сүв	Asn	Arg	Сув 655	Tyr
Gly	Val	Arg	Asn 660	Leu	Phe	Asn	Trp	Met 665	His	Tyr	Thr	Ile	Pro 670	Gln	Сув
Tyr	Ile	His 675	Val	Ser	Asp	Tyr	Tyr 680	Asn	Pro	Pro	His	Gly 685	Val	Ser	Leu
Glu	Asn 690	Arg	Glu	Asn	Pro	Pro 695	Glu	Gly	Pro	Ser	Ser 700	Tyr	Arg	Gly	His
Leu 705	Gly	Gly	Ile	Glu	Gly 710	Leu	Gln	Gln	Lys	Leu 715	Trp	Thr	Ser	Ile	Ser 720
Сүз	Ala	Gln	Ile	Ser 725	Leu	Val	Glu	Ile	Lys 730	Thr	Gly	Phe	Lys	Leu 735	Arg
Ser	Ala	Val	Met 740	Gly	Asp	Asn	Gln	Сув 745	Ile	Thr	Val	Leu	Ser 750	Val	Phe
Pro	Leu	Glu	Thr	Glu	Ser	Ser	Glu	Gln	Glu	Leu	Ser	Ser	Glu	Asp	Asn

									-
-	С	C	n	t.	٦.	n	u	e	d

PheGlyLysLysGlnTyrLeuAsnGlyYalGlnLeuProGlnSerLeuLysThAlaThrArgTlAlaProLeuSerAspAlaIleProAspAspLouGlyThrAlaThrArgTlLeuAlaProLeuSerAspAlaIleProAspAspLouGlyThrLeuAlaSerIleGlyThrAlaAlaAspAspAspLouGlyThrLeuAlaSerIleGlyThrAlaAlaAlaAlaPheHisSerGlyThrArgHisValValCysArgValAlaAlaAlaAlaPheHisSerGlyThrArgHisValValCysArgValAlaAlaAlaPheHisSerGlyThrArgLeuAlaValCysArgValKisKisKisSerIleSerPhePheSerValArgIleLeuGlnTyrHisSerIleAspSerSerPheSerValArgLeuAlaLeuAlaValValSerLeuAlaAlaSerProSerPheLeuArgCis <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-cor</th><th>it in</th><th>uea</th><th></th><th></th></td<>													-cor	it in	uea		
77077578011e Phe Leu Lys Pro Ang Glu Thr Phe Val His Ser Gly Phe Ile Tyr 790800Phe Gly Lys Lys Gln Tyr Leu Asn Gly Val Gln Leu Pro Gln Ser Leu 810815Lys Thr Ala Thr Arg Ile Ala Pro Leu Ser Asp Ala Ile Phe Asp Asp 820825Leu In Gly Thr Leu Ala Ser Ile Gly Thr Ala Phe Glu Arg Ser Ile 840845Leu Glu Thr Arg His Val Val Pro Cys Arg Val Ala Ala Ala Phe His 855860Ser Glu Thr Arg His Val Val Pro Cys Arg Val Ala Ala Ala Phe His 855860Chr Phe Phe Ser Val Arg Ile Leu Gln Tyr His His Leu Gly Phe Asm 870870Ser Gly Thr Asp Leu Gly Gln Leu Ser Leu Ser Lys Pro Leu Asp Phe 890891Sily Thr Ile Thr Leu Ala Leu Ala Val Pro Gln Val Leu Gly Gly Leu 900905Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 925925Al Thr Ser Gly Leu Phe Gln Leu Lys Thr Tyr Leu Gln Met Ile His 930940Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 965976Ser Gln Asp Leu Phe Ser he Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 970975Ser Gln Asp Leu Thr Ser Phe Leu Ile Asn Thr Leu Phe His Ser Ser 1010910Sha Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu 9851005Ser Gln Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu 9851005Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser 10101005Ser Glu Lys Arg Leu Gln Ile Asn Thr Leu Phe Ser Arg Thr 1025Ser Glu Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu 1005Ala Asp Leu Glu Asp Leu Gln The Leu Gln Arg Trp Ser 1010Ser Gly Lys Arg Leu Gln The Leu Gly Tyr Leu 1040 <th></th> <th></th> <th>755</th> <th></th> <th></th> <th></th> <th></th> <th>760</th> <th></th> <th></th> <th></th> <th></th> <th>765</th> <th></th> <th></th> <th></th> <th></th>			755					760					765				
785 790 795 800 Phe Gly Lys Lys Gln Tyr Leu Asn Gly Val Gln Leu Pro Gln Ser Leu 815 810 810 Gln Leu Pro Gln Ser Leu 815 Lys Thr Ala Thr Arg Ile Ala Pro Leu Ser Asp Ala Ile Phe Asp Asp 820 820 830 831 Leu Gln Gly Thr Leu Ala Ser Ile Gly Thr Ala Phe Glu Arg Ser Ile 840 840 841 841 Ser Glu Thr Arg His Val Val Pro Cys Arg Val Ala Ala Ala Phe His 860 860 860 Ser Glu Thr Asp Leu Gly Gln Leu Gln Tyr His His Leu Gly Phe Asn 870 857 860 Gly Thr Asp Leu Gly Gln Leu Ser Leu Ser Lys Pro Leu Asp Phe 890 991 910 910 Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 915 920 927 926 Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 975 950 960 977 Ser Gln Asp Leu Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 975 976 976 977 Ser Gln Asp Leu Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 975 976 976 977 Ser Gln Asp Leu Chr Ser Arg Phe Val Cys Lys Thr Leu Leu Ser Ser 1000 1005 1015 1020 Fre Leu Ser Ala Lys Asn Lys Leu Cly Lys Lys Thr Leu Clu Glu Gly Thr 1025 1020 1020 1020 Fre Leu Ser Gly Ly	Ala		Arg	Val	Ala	Ala		Leu	Ala	Lys	Val			Ala	Суз	Gly	7
805 810 815 Lys Thr Ala Thr Arg Ile Ala Pro Leu Ser Asp Ala Ile Pro 825 Leu Gl Gly Thr Leu Ala Pro Ser Ser Glu Arg Fle Glu Ala Ala Ala Ala Pro Basic Ser Glu Arg Fle Glu Arg Fle Glu Fle Ala Ala Ala Pro Basic Ser Glu Thr Arg Fle Cys Arg Fle Cys Arg Fle Leu Glu Pro Euu Glu Pro Ser Ser Glu Fle Arg Fle Arg Fle Arg Fle Arg Ser Ser Ser Ser Ser Ser	Ile 785	Phe	Leu	Lys	Pro		Glu	Thr	Phe	Val			r Gly	Phe	Ile	-	
820 825 830 Leu Gln Gly Thr Leu Ala Ser Ile Gly Thr Ala Phe Glu Arg Ser Ile 840 840 845 Ser Glu Thr Arg His Val Val Pro Cys Arg Val Ala Ala Ala Ala Phe His 860 860 Thr Phe Phe Ser Val Arg Ile Leu Gln Tyr His His Leu Gly Phe Asn 875 860 Gly Gly Thr Asp Leu Gly Gln Leu Ser Leu Ser Lys Pro Leu Asp Phe 885 890 Gly Thr Ile Thr Leu Ala Leu Ala Val Pro Gln Val Leu Gly Gly Leu 900 910 Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 920 921 Al Thr Ser Gly Leu Phe Gln Leu Lys Thr Tyr Leu Gln Met Ile His 930 925 Ser Gla Asp Asp Leu Phe Leu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 955 950 Ser Gln Asp Leu Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 975 975 Ser Gln Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Phe His Ser Ser 1000 1005 Thr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Thr 1025 1020 Thr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Thr 1045 1035 Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 1045 1045 Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 1045 1035 Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 1045 1035 Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 1045 1035	Phe	Gly	Lys	Lys		Tyr	Leu	Asn	Gly			Lei	ı Pro	Gln			ι
835 840 845 Ser Glu Thr Arg His Val Val Pro Cys Arg Val Ala Ala Ala Ala Phe His 850 Ala Ala Ala Ala Ala Phe His 850 Thr Phe Phe Ser Val Arg Ile Leu Gln Tyr His His Leu Gly Phe Asm 870 875 Gly Thr Asp Leu Gly Gln Leu Ser Leu Ser Lys Pro Leu Asp Phe 885 Ser Gly Thr Asp Leu Gly Gln Leu Ser Leu Ser Lys Pro Leu Asp Phe 885 Sily Thr Ile Thr Leu Ala Leu Ala Val Pro Gln Val Leu Gly Gly Leu 900 905 Ser Phe Leu Asm Pro Glu Lys Cys Phe Tyr Arg Asm Leu Gly Asp Pro 915 910 Ser Phe Leu Asm Pro Gly Leu Phe Gln Leu Lys Thr Tyr Leu Gln Met Ile His 935 936 Ala Thr Ser Gly Leu Phe Leu Pro Leu Ile Ala Lys Asm Pro Gly Asm Cys 955 956 Ser Ala Ile Asp Phe Val Leu Asm Pro Ser Gly Leu Asm Val Pro Gly 965 970 Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980 985 Chr Leu Ser Ala Lys Asm Lys Leu Ile Asm Thr Leu Phe His Ser Ser 1000 1005 Chr Leu Ser Ala Lys Asm Lys Leu Cys Lys Trp Leu Leu Ser Ser 1005 1020 Chr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Thr 1020 1020 Chr Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 1045 1066 Chr Pro Ser Gly Lys Arg Leu Gln Ile Asm His Asm Thr Glu Thr 1055 1066 Chr Pro Ser Tyr Leu Ala Ser Lys Ile Thr Leu Gln Arg Trp Ser 1060 1065 Chr Phe Ser Tyr Leu Asp	Lys	Thr	Ala		Arg	Ile	Ala	Pro			Asp	Ala	a Ile			Asp	>
850 855 860 Thr Phe Ne Val Arg Ile Leu Gln Tyr His His Leu Gly Phe Ass 365 Phe Ne Ser Val Arg Ile Leu Gln Tyr His His Leu Gly Phe Ass Phe 890 2ys Gly Thr Asp Leu Gly Glu Leu Asp Pro Glu Gly Cue Asp Pro 900	Leu	Gln		Thr	Leu	Ala	Ser		-	Thr	Ala	Phe		-	Ser	Ile	<u>}</u>
365370375880LysGlyThrAspLeuGlyGlnLeuSerLeuSerLysProLeuAspPhe390900euAlaLeuAlaValProGlnValLeuGlyGlyLeu900900euAlaLeuAlaValProGlnValLeuGlyGlyLeu900900900920ProGlnValLeuGlyAspPro910SerPheLeuAsnProGluLysThrTyrLeuGlyAspPro925ValThrSerGlyLeuProLeuLysThrTyrLeuGlyAsnCys930935950950950957950957950950957950SerAlaIleAspProLeuProGlyLeuAsnCys950SerAlaIleAspPheValLeuAsnProGly975950SerGlnAspLeuThrSerPheLeuAsnCys975950SerAlaIleAspLeuAsnLeuAsnCysProGly975975SerGlnAspLeuGlnMetLeuAsnLeuAsn1005102	Ser		Thr	Arg	His	Val		Pro	Cys	Arg	Val			. Ala	Phe	His	3
885890895Sly Thr Ile Thr Leu Ala Leu Ala Val Pro Gln Val Leu Gly Gly Leu 900Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 925Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 925Al Thr Ser Gly Leu Phe Gln Leu Lys Thr Tyr Leu Gln Met Ile His 930Ser Phe Leu Asp Pro Leu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 955Al Thr Ser Gly Leu Phe Leu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 965Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 975Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980990Chr Leu Ser Ala Lys Asn Lys Leu Ile Asn Thr Leu Phe His Ser Ser 10001005Chr Pro 1025Val Met Ser Arg Phe 1015Ala Asp Ile Phe Ser Arg Thr 1035Chr Pro 1025Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu 1040Glu Gly Thr 1045Chr Pro 1055Leu Asp Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 1060Chr Pro 1055Ser Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 1060Chr Pro 1055Ser Arg Lou Asp His Cys Asp Gln Val Leu Ala Asp 1065Chr Die Leu Asp Arg Leu Arg Lys Thr Val Asp Leu Ala Asp 1060Chr Pro 1065Ser Tyr Leu Asp His Cys Asp Gln Val Leu Ala Asp 1065Chr Pro 1075Ser Tyr Leu Asp His Cys Asp Gln Val Leu Ala Asp 1095Chr Ile Leu Thr Gln Ile Thr Cys Thr Val Asp Leu Ala Gln Ile Leu 1100Chr Thr Gln Ile Thr Cys Thr Val Asp Leu Ala Asp 1095Chr Ile Thr Cys Thr Val Asp Leu Ala Gln Leu Ile 1110Chr Fro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asp	Thr 865	Phe	Phe	Ser	Val		Ile	Leu	Gln	Tyr			s Leu	Gly	Phe		
900905910Ser Phe Leu Asn Pro Glu Lys Cys Phe Tyr Arg Asn Leu Gly Asp Pro 915920Val Thr Ser Gly Leu Phe Gln Leu Lys Thr Tyr Leu Gln Met Ile His 930935Met Asp Asp Leu Phe Leu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 950Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 	Lys	Gly	Thr	Asp		Gly	Gln	Leu	Ser			LY	s Pro) Leu			÷
915920925ValThr Ser Gly Leu Phe Gln Leu Lys Thr Tyr Leu Gln Met Ile His 930935Wet Asp Asp Leu Phe Leu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 950955Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 965960Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980970Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980990Thr Leu Ser Ala Lys Asn Lys Leu Ile Asn Thr Leu Phe His Ser Ser 10001005Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser 10101005Thr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Thr 10251020Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 10401045Arg Thr Leu Leu Ala Ser Lys Ile Ile Asn His Asn Thr Glu Thr 10651065Pro Ile Leu Asp Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 10701075Leu Thr Gln Ile Thr Cys Thr Val Asp Leu Ala Gln Ile Leu 11051095Ala Leu Thr Gln Ile Thr Cys Thr Val Asp Leu Ala Gln Ile Leu 11051106Arg Glu Tyr Thr Trp Ala His Ile Leu Glu Gly Arg Gln Leu Ile 11151125Ser Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asn	Gly	Thr	Ile		Leu	Ala	Leu	Ala			Gln	Va.	l Leu	-	-	Leu	L
930935940MetAsp Asp Leu PheLeu Pro Leu Ile Ala Lys Asn Pro Gly Asn Cys 955955SerAla Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 965967SerGln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980980FhrLeu Ser Ala Lys Asn Lys LeuIle Asn Thr Leu Phe His Ser Ser 1000Ala AspLeu Glu Asp Glu Met 1015Val Cys Lys Trp Leu 1025Ala AspLeu Glu Asp Glu Met Val Cys Lys Trp Leu 1025Leu Ser Arg Thr 1030FhrPro 1005Val Met Ser Arg Phe 1030Ala AspIle Phe 1035Ser Arg Thr 1035Pro 1040Gly Lys Arg Leu Gln Ile Leu Gly Tyr 1045Leu Glu Gly Thr 1055Arg 1055Fhr Ser Tyr Leu Arg 1060Ile Thr Leu Gln Arg Trp Ser 1066Pro 1065Ile Asp Arg Leu Arg 1070Leu Ala Asp 1085Pro 1065Fhe Ser Tyr Leu Asp 1085His Cys Asp Gln Val 1095Ala Leu 1106Thr Gln Ile Thr Cys 1105Fhr Val Asp Leu Ala 1105Arg 1115Thr Gln Ile Thr Cys 1120Fhr Val Asp Leu Ala 1120Arg 1130Thr Leu Pro Cys 1135Ile Leu Glu Gln Leu Asn 1120Ala 1130Thr Leu Pro Cys 1135Ala 1130Thr Leu Pro Cys 1135Ala 1130Fro Tyr Glu His Cys 1135Ala 1130Fro Tyr Glu His Cys 1135	Ser	Phe		Asn	Pro	Glu	Lys			Tyr	Arg	Ası			Asp	Pro	,
945950955960Ser Ala Ile Asp Phe Val Leu Asn Pro Ser Gly Leu Asn Val Pro Gly 965970975Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 985980985Fhr Leu Ser Ala Lys Asn Lys Leu Ile Asn Thr Leu Phe His Ser Ser 100010051005Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser 101510051005Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser 102510051005Fhr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Thr 104010351045Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Thr 10451066116Arg Thr Leu Leu Ala Ser Lys Ile Ile Asn His Asn Thr Glu Thr 106510601075Pro Ile Leu Asp Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 107510951095Leu Trp Phe Ser Tyr Leu Asp His Cys Asp Gln Val Leu Ala Asp 10851095109Ala Leu Thr Gln Ile Thr Cys Thr Val Asp Leu Ala Gln Ile Leu 111011101112Arg Glu Tyr Thr Trp Ala His Ile Leu Glu Gly Arg Gln Leu Ile 11251125112Ala Thr Leu Pro Cys Ile Leu Glu Gln Leu Asn Val Ile Trp 11301135114Leu Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asn	Val		Ser	Gly	Leu	Phe		Leu	Гла	Thr	Tyr			ı Met	Ile	His	ł
965970975Ser Gln Asp Leu Thr Ser Phe Leu Arg Gln Ile Val Arg Arg Thr Ile 980980980Fhr Leu Ser Ala Lys Asn Lys Leu Ile Asn Thr Leu Phe His Ser Ser 10001005Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser 10101015Ala Asp Leu Glu Asp Glu Met Ser Arg Phe 1025Ala Ala Asp Ile Phe Ser Arg Thr 1035Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu 1040Glu Gly Thr 1065Arg Thr Leu Leu Ala Ser Lys 1055Ile Ile Asn His Asn 1065Pro Ile Leu Asp Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 1070Leu Trp Phe Ser Tyr Leu Asp His Cys Asp Gln Val 1085Ala Leu Thr Gln Ile Thr Cys Thr Val Asp Leu Ala Gln Ile Leu 1110Arg Glu Tyr Thr Trp Ala His 1120Ala Leu Thr Leu Pro Cys Ile Leu Glu Gln Leu Asn 1130Ala Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asn	Met 945	Asp	Asp	Leu	Phe		Pro	Leu	Ile	Ala			n Pro	Gly	Asn		
980985990Fhr Leu Ser Ala Lys Asn Lys Leu Ile Asn Thr Leu Phe His Ser Ser 10001005Ala Asp 1010Leu Glu Asp Glu Met 1015Val Cys Lys Trp Leu 	Ser	Ala	Ile	Asp		Val	Leu	Asn	Pro			Lei	ı Asr	ı Val		-	<i>,</i>
995 1000 1005 Ala Asp Leu Glu Asp Glu Met Val Cys Lys Trp Leu Leu Ser Ser Introposition Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Trp Introposition Val Met Ser Arg Phe Ala Ala Asp Ile Phe Ser Arg Trp Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Trr Pro Ser Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Trr 1040 Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Glu Gly Trr 1040 Gly Lys Arg Leu Gln Ile Asp His Asp Ile Ile Gly Tyr Leu Glu Gly Trr 1040 Gly Lys Arg Leu Gln Ser Lys Ile Asp Ile Asp Mis Asp Ser Asp Introp Ile Lu Ser Asp Ile Lu Asp Ile Ile	Ser	Gln	Asp		Thr	Ser	Phe	Leu			Ile	Va:	l Arg			Ile	3
1010 1015 1020 Fhr Pro Val Met Ser Arg Phe Ala Ala Asp Ile Phe 1035 Ser Arg Thr Pro 1020 Gly Lys Arg Phe 104 Ala Ala Asp Ile Phe 1035 Ser Arg Thr 1035 Pro 1040 Gly Lys Arg Leu Gln Ile Leu Gly Tyr Leu Gly Thr 1045 Arg Thr 1045 Ile Leu Gly Tyr Leu Gly Thr 1050 Gly Thr Intr 1050 Fit Gly Thr Intr 1050 Fit Gly Arg Intr Intr </td <td>Thr</td> <td>Leu</td> <td></td> <td>Ala</td> <td>ГЛа</td> <td>Asn</td> <td>Lys</td> <td></td> <td></td> <td>e As</td> <td>n Th</td> <td>r Le</td> <td></td> <td></td> <td>is S</td> <td>er Se</td> <td>er</td>	Thr	Leu		Ala	ГЛа	Asn	Lys			e As	n Th	r Le			is S	er Se	er
102510301035ProSerGly Lys Arg LeuGlnIleLeuGly TyrLeuGluGly Thr1040Gly Lys Arg LeuGlnIleLeuGly TyrLeuGluGly ThrArgThrLeuLeuAlaSerLysIleIleAsnHisAsnThrGluThrProIleLeuAspArgLeuArgLysIleThrLeuGlnArgTrpSerProIleLeuAspArgLuArgLysIleThrLeuGlnArgTrpSerLeuThrGlnIleThrCysAspGlnValLeuAlaAsp1005ThrGlnIleThrCysThrValAspLeuAlaAsp1000ThrGlnIleThrCysThrValAspLeuAlaAsp1010ThrGlnIleThrCysThrValAspLeuIleIleIleArgGluTyrThrThrAlaHisIleLeuGluGlnLeuIleIleArgGluThrLeuProCysIleLeuGluGluArgGlnLeuIleArgGluThrLeuProCysIleLeuGluGluLeuIleTrp<	Ala			ı Gl	u Asj	o Glu			al C	As P	ув Т			Leu	Ser	Ser	
104010451050ArgThrLeuLeuAlaSerLysIleIleAsnHisAsnThrGluThr1055LeuLeuAlaSerLysIleIleAsnHisAsnThrGluThrProIleLeuAspArgLeuArgLysIleThrLeuGlnArgTrpSerLeuTrpPheSerTyrLeuAspHisCysAspGlnValLeuAlaAsp1005PheSerTyrLeuAspHisCysAspGlnValLeuAlaAsp1005PheSerTyrLeuAspHisCysAspCluAlaAspIle1100ThrGlnIleThrCysThrValAspLeuAlaAspIleIleArgGluThrThrThrAlaHisIleLeuGluGluLeuAsnValIleTrpIlaSeuLysProTyrGluHisCysProLysAsnValIleTrpIlaLucLysSerAlaAsn	Thr			L Me	t Sei	r Arg			la A	la A	sp I			Ser	Arg	Thr	
1055 1060 1065 Pro Ile Leu Asp Arg Leu Arg Lys Ile Thr Leu Gln Arg Trp Ser 1070 Arg Trp Leu Asp 1075 Leu Trp Phe Ser Tyr Leu Asp 1090 His Cys Asp Gln Val Leu Ala Asp 1095 Leu Ala Asp 1095 Ala Leu Thr Gln Ile Thr Cys 1hr Val Asp Leu Ala Gln Ile Leu 1110 Thr Gln Ile Thr Cys 1hr Val Asp Leu Ala Gln Ile Leu 11110 Arg Glu Tyr Thr Trp Ala His 11e Leu Glu Gly Arg Gln Leu Ile 1125 Gln Leu Ile 1125 Sly Ala Thr Leu Pro Cys Ile Leu Glu Gln Leu Asp 1140 Val Ile Trp 1140 Leu Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asp 112 Ser Ala Asp 112	Pro			у Ly	s Arq	g Leu			le L	eu G	ly T			Glu	Gly	Thr	
107010751080LeuTrpPheSerTyrLeuAspHisCysAspGlnValLeuAlaAspAlaLeuThrGlnIleThrCysThrValAspLeuAlaGlnIleLeuAspAlaLeuThrGlnIleThrCysThrValAspLeuAlaGlnIleLeuArgGluTyrThrTrpAlaHisIleLeuGluGlyArgGlnLeuIleArgGluTyrThrLeuProGluIleLeuGluGlnLeuIle1110ThrLeuProCysIleLeuGluGlnLeuIleTrp1130ThrLeuProCysIleLeuGluGlnLeuAsnLeuLysProTyrGluHisCysProLysSerAlaAsn	Arg			ı Le	u Ala	a Sei			le I	le A	sn H			Thr	Glu	Thr	
108510901095Ala Leu 1100Thr Gln Ile Thr Cys 1105Cys Thr Val Asp 1105Leu Ala Ala 1110Gln Ile Leu Leu 1110Arg Glu 1115Tyr Thr Trp 1120His Ile 1120Ile Leu Glu Glu 1120Gln Leu Leu Arg Gln Leu 1125Arg Glu 1115Thr Leu Pro Tyr Glu His Cys Pro Lys Cys Ala LysArg Gln Leu Asp Leu Asp Leu Asp Leu LysGln Leu Asp Leu Lys Ala Lys Ser Ala Asp	Pro			ı Asj	p Arq	g Leu			ys I	le T	hr L			Arg	Trp	Ser	
1100 1105 1110 Arg Glu Tyr Thr Trp Ala His Ile Leu Glu Gly Arg Gln Leu Ile 1125 1125 Sly Ala Thr Leu Pro Cys Ile Leu Glu Gln Leu Asn Val Ile Trp 1130 1140 Leu Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asn	Leu			e Se	r Ty:	r Leu			is C	үв А	sp G			Leu	Ala	Asp	
1115 1120 1125 Gly Ala Thr Leu Pro Cys Ile Leu Glu Gln Leu Asn Val Ile Trp 1130 Val Ile Trp 1140 Leu Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asn	Ala			Gli	n Ile	∋ Thi			hr V	al A	sp L			Gln	Ile	Leu	
1130 1135 1140 Leu Lys Pro Tyr Glu His Cys Pro Lys Cys Ala Lys Ser Ala Asn	Arg			f Th	r Trj	o Ala			le L	eu G	lu G	-	-	Gln	Leu	Ile	
	Gly			r Le	u Pro	о Суз			eu G	lu G	ln L			Val	Ile	Trp	
	Leu			э Тү	r Glı	ı His			ro L	λa C	ys A			Ser	Ala	Asn	

a	ue	n	Т	nt.	-co
	ue	.11	Т	ΠL	-00

Pro	Lys 1160	Gly	Glu	Pro	Phe	Val 1165	Ser	Ile	Ala	Ile	Lys 1170	Lys	His	Val
Val	Ser 1175	Ala	Trp	Pro	Asp	Gln 1180	Ser	Arg	Leu	Ser	Trp 1185	Thr	Ile	Gly
Asp	Gly 1190		Pro	Tyr	Ile	Gly 1195	Ser	Arg	Thr	Glu	Asp 1200	Lys	Ile	Gly
Gln	Pro 1205	Ala	Ile	Lys	Pro	Lys 1210	Cys	Pro	Ser	Ala	Ala 1215	Leu	Arg	Glu
Ala	Ile 1220	Glu	Leu	Thr	Ser	Arg 1225	Leu	Thr	Trp	Val	Thr 1230	Gln	Gly	Gly
Ala	Asn 1235		Asp	Leu	Leu	Val 1240		Pro	Phe	Ile	Glu 1245	Ala	Arg	Val
Asn	Leu 1250		Val	Gln	Glu	Ile 1255	Leu	Gln	Met	Thr	Pro 1260	Ser	His	Tyr
Ser	Gly 1265	Asn	Ile	Val	His	Arg 1270	Tyr	Asn	Aap	Gln	Tyr 1275	Ser	Pro	His
Ser	Phe 1280	Met	Ala	Asn	Arg	Met 1285	Ser	Asn	Ser	Ala	Thr 1290	Arg	Leu	Val
Val	Ser 1295	Thr	Asn	Thr	Leu	Gly 1300	Glu	Phe	Ser	Gly	Gly 1305	Gly	Gln	Ser
Ala	Arg 1310	Asp	Ser	Asn	Ile	Ile 1315	Phe	Gln	Asn	Val	Ile 1320	Asn	Phe	Ala
Val	Ala 1325	Leu	Phe	Asp	Leu	Arg 1330	Phe	Arg	Asn	Val	Ala 1335	Thr	Ser	Ser
Ile	Gln 1340		His	Arg	Ala	His 1345	Leu	His	Leu	Ser	Lys 1350	Cya	Сүз	Thr
Arg	Glu 1355	Val	Pro	Ala	Gln	Tyr 1360	Leu	Val	Tyr	Thr	Ser 1365	Thr	Leu	Pro
Leu	Asp 1370	Leu	Thr	Arg	Tyr	Arg 1375	Asp	Asn	Glu	Leu	Ile 1380	Tyr	Asp	Asp
Asn	Pro 1385	Leu	Arg	Gly	Gly	Leu 1390	Asn	Сүз	Asn	Leu	Ser 1395	Phe	Asp	Asn
Pro	Leu 1400	Phe	Гла	Gly	Gln	Arg 1405	Leu	Asn	Ile	Ile	Glu 1410	Glu	Asp	Leu
Ile	Arg 1415	Leu	Pro	Tyr	Leu	Ser 1420	Gly	Trp	Glu	Leu	Ala 1425	Lys	Thr	Val
Ile	Gln 1430	Ser	Ile	Ile	Ser	Asp 1435	Ser	Asn	Asn	Ser	Ser 1440	Thr	Asp	Pro
Ile	Ser 1445		Gly	Glu	Thr	Arg 1450	Ser	Phe	Thr	Thr	His 1455	Phe	Leu	Thr
Tyr	Pro 1460	-	Ile	Gly	Leu	Leu 1465	Tyr	Ser	Phe	Gly	Ala 1470	Leu	Ile	Ser
Tyr	Tyr 1475	Leu	Gly	Asn	Thr	Ile 1480	Ile	Arg	Thr	ГЛЗ	Lys 1485	Leu	Thr	Leu
Asn	Asn 1490		Ile	Tyr	Tyr	Leu 1495	Ala	Thr	Gln	Ile	His 1500	Asn	Leu	Pro
His	Arg 1505		Leu	Arg	Ile	Leu 1510	Lys	Pro	Thr	Leu	Lys 1515	His	Ala	Ser
Val	Ile 1520	Ser	Arg	Leu	Ile	Ser 1525	Ile	Asp	Ser	His	Phe 1530	Ser	Ile	Tyr

											- CO1	ntir	luec	1
Ile	Gly 1535	Gly	Thr	Ala	Gly	Asp 1540	Arg	Gly	Leu	Ser	Asp 1545	Ala	Ala	Arg
Leu	Phe 1550		Arg	Thr	Ala	Ile 1555		Val	Phe	Leu	Gln 1560	Phe	Val	Arg
ГÀа	Trp 1565	Ile	Val	Glu	Arg	Lys 1570	Thr	Ala	Ile	Pro	Leu 1575	Trp	Val	Ile
Tyr	Pro 1580		Glu	Gly	Gln	Ser 1585		Ser	Pro	Ile	Asn 1590	Ser	Phe	Leu
His	His 1595	Val	Ile	Ala	Leu	Leu 1600		His	Glu	Ser	Ser 1605	His	Asp	His
Val	Cys 1610		Ala	Glu	Ala	His 1615	Ser	Arg	Val	Glu	Thr 1620	Phe	Asp	Asn
Leu	Val 1625	Tyr	Met	Cys	Lys	Ser 1630	Thr	Ala	Ser	Asn	Phe 1635	Phe	His	Ala
Ser	Leu 1640		Tyr	Trp	Arg	Ser 1645	Arg	Ser	Lys	Asn	Gln 1650	Asp	Lys	Arg
Glu	Met 1655	Thr	Lys	Ile	Leu	Ser 1660	Leu	Thr	Gln	Thr	Glu 1665	Lys	Lys	Asn
Ser	Phe 1670	Gly	Tyr	Thr	Ala	His 1675	Pro	Glu	Ser	Thr	Ala 1680	Val	Leu	Gly
Ser	Leu 1685	Gln	Thr	Ser	Leu	Ala 1690		Pro	Pro	Ser	Ala 1695	Asp	Glu	Ala
Thr	Tyr 1700		Arg	Lys	Asn	Lys 1705		Leu	Lys	Ala	Ser 1710	Arg	Pro	Gly
Lys	Tyr 1715		Gln	Asn	Thr	Thr 1720		Ala	Pro	Pro	Asn 1725	Gln	Thr	Ser
Сүа	Arg 1730		Val	Ser	Pro	Asn 1735	Ile	Thr	Gly	Thr	Asp 1740	Gly	Сүа	Pro
Ser	Ala 1745		Glu	Gly	Ser	Asn 1750		Asn	Asn	Asn	Asn 1755	Leu	Val	Ser
His	Arg 1760	Ile	Val	Leu	Pro	Phe 1765	Phe	Thr	Leu	Ser	His 1770	Asn	Tyr	Asn
Glu	Arg 1775	Pro	Ser	Ile	Arg	Lys 1780	Ser	Glu	Gly	Thr	Thr 1785	Glu	Ile	Val
Arg	Leu 1790		Arg	Gln	Leu	Arg 1795		Ile	Pro	Asp	Thr 1800	Thr	Ile	Tyr
Сүз	Arg 1805		Thr	Gly	Ile	Val 1810		Ser	Met	His	Tyr 1815	Lys	Leu	Asp
Glu	Val 1820		Trp	Glu		Asp 1825		Phe	Lys		Ala 1830	Ile	Thr	Leu
Ala	Glu 1835	Gly	Glu	Gly	Ser	Gly 1840		Leu	Leu	Leu	Leu 1845	Gln	Lys	Tyr
Lya	Val 1850		Thr	Leu	Phe	Phe 1855	Asn	Thr	Leu	Ala	Thr 1860	Glu	His	Ser
Ile	Glu 1865	Ala	Glu	Ile	Ile	Ser 1870	Gly	Ile	Thr	Thr	Pro 1875	Arg	Met	Leu
Leu	Pro 1880		Met	Ser	Arg	Phe 1885	His	Gly	Gly	Gln	Ile 1890	Lys	Val	Thr
Leu	Asn 1895	Asn	Ser	Ala	Ser	Gln 1900	Ile	Thr	Asp	Ile	Thr 1905	Asn	Pro	Ser
Trp	Leu	Ala	Asp	Gln	Lys	Ser	Arg	Ile	Pro	Lys	Gln	Val	Glu	Ile

_											- CO]	ntii	nuec	1
	1910					1915					1920			
Ile	Thr 1925		Asp	Ala	Glu	Thr 1930		Glu	Asn	Ile	Asn 1935		Ser	Гла
Leu	Tyr 1940	Glu	Ala	Val	Gln	Gln 1945		Ile	Val	Ser	His 1950	Ile	Asp	Pro
Asn	Ala 1955		Lys	Val	Val	Val 1960		Lys	Val	Phe	Leu 1965	Ser	Asp	Ile
Asp	Gly 1970	Ile	Leu	Trp	Leu	Asn 1975		Asn	Leu	Thr	Pro 1980		Phe	Gly
Leu	Gly 1985	Tyr	Leu	Ile	Lys	Pro 1990		Thr	Ser	Ser	Pro 1995		Ser	Ser
Glu	Trp 2000		Leu	Суз	Leu	Ser 2005		Leu	Leu	Ser	Thr 2010		Arg	Arg
Leu	Pro 2015		Gln	Ser	His	Thr 2020		Суз	Met	His	Val 2025		Gln	Thr
Ala	Leu 2030		Leu	Gln	Ile	Gln 2035		Ser	Ser	Tyr	Trp 2040		Ser	His
Leu	Val 2045		Tyr	Ala	Asn	His 2050	Asn	Leu	His	Leu	Asp 2055		Ile	Asn
Leu	Gly 2060	Phe	Pro	Ser	Leu	Glu 2065		Val	Leu	Tyr	His 2070	Arg	Tyr	Asn
Leu	Val 2075		Ser	Gln	ГЛа	Gly 2080		Leu	Thr	Ser	Ile 2085	Val	Gln	His
Leu	Ala 2090	His	Leu	Gln	Thr	Glu 2095		Arg	Glu	Leu	Val 2100	Asn	Asp	Tyr
Asn	Gln 2105	Gln	Arg	Gln	Ser	Arg 2110		Gln	Thr	Tyr	His 2115		Ile	Lys
Thr	Ile 2120		Gly	Arg	Ile	Thr 2125		Leu	Val	Asn	Asp 2130		Leu	Lys
Phe	Phe 2135	Leu	Ile	Ile	Gln	Ala 2140		Lys	His	Asn	Cys 2145		Trp	Gln
Glu	Glu 2150	Leu	Arg	Ala	Leu	Pro 2155		Leu	Ile	Ser	Val 2160	Cys	Thr	Arg
Phe	Tyr 2165	His	Thr	Arg	Asn	Cys 2170		Суз	Glu	Asn	Arg 2175	Phe	Leu	Val
Gln	Thr 2180	Leu	Tyr	Leu	Ser	Arg 2185	Met	Gln	Asp	Ser	Glu 2190	Ile	Гла	Leu
Ile	Asp 2195	Arg	Leu	Thr	Gly	Leu 2200	Leu	Ser	Leu	Сүз	Pro 2205	Asn	Gly	Phe
Phe	Arg 2210													
-01), an	۰ TF	NO	20										
<21	D> SE(L> LE 2> TY	NGTH	: 18											
<213		GANI	SM:	Zair	e ebo	olavi	rus							
<223	l> NAI	ME/K	EY: 1			ure Full	vira	al s	eque	nce				
<400)> SE(QUEN	CE:	20										
cgga	acaca	ca a	aaag	aaag	a aga	aattt	tta 🤉	ggat	cttt	tg t	gtgcg	aata	acta	atgag
agat	taat	aa t	ttte	ctct	c ati	taaaa	ttt a	atat	cada	at t	taaati	taaa	atto	attac
agai	- cauci	au c			c uc	eguuu		acue	eggu	uc c	cauac	eguu	ucc	jecue

taatcacacc tggtttgttt	cagagccaca	tcacaaagat	agagaacaac	ctaggtctcc	180	
gaagggagca agggcatcag	tgtgctcagt	tgaaaatccc	ttgtcaacac	ctaggtctta	240	
tcacatcaca agttccacct	cagactctgc	agggtgatcc	aacaacctta	atagaaacat	300	
tattgttaaa ggacagcatt	agttcacagt	caaacaagca	agattgagaa	ttaaccttgg	360	
ttttgaactt gaacacttag	gggattgaag	attcaacaac	cctaaagctt	ggggtaaaac	420	
attggaaata gttaaaagac	aaattgctcg	gaatcacaaa	attccgagta	tggattctcg	480	
teeteagaaa atetggatgg	cgccgagtct	cactgaatct	gacatggatt	accacaagat	540	
cttgacagca ggtctgtccg	ttcaacaggg	gattgttcgg	caaagagtca	tcccagtgta	600	
tcaagtaaac aatcttgaag	aaatttgcca	acttatcata	caggcctttg	aagcaggtgt	660	
tgattttcaa gagagtgcgg	acagtttcct	tctcatgctt	tgtcttcatc	atgcgtacca	720	
gggagattac aaacttttct	tggaaagtgg	cgcagtcaag	tatttggaag	ggcacgggtt	780	
ccgttttgaa gtcaagaagc	gtgatggagt	gaagegeett	gaggaattgc	tgccagcagt	840	
atctagtgga aaaaacatta	agagaacact	tgctgccatg	ccggaagagg	agacaactga	900	
agctaatgcc ggtcagtttc	tctcctttgc	aagtctattc	cttccgaaat	tggtagtagg	960	
agaaaaggct tgccttgaga	aggttcaaag	gcaaattcaa	gtacatgcag	agcaaggact	1020	
gatacaatat ccaacagett	ggcaatcagt	aggacacatg	atggtgattt	tccgtttgat	1080	
gcgaacaaat tttctgatca	aatttctcct	aatacaccaa	gggatgcaca	tggttgccgg	1140	
gcatgatgcc aacgatgctg	tgatttcaaa	ttcagtggct	caagctcgtt	tttcaggctt	1200	
attgattgtc aaaacagtac	ttgatcatat	cctacaaaag	acagaacgag	gagttcgtct	1260	
ccatcctctt gcaaggaccg	ccaaggtaaa	aaatgaggtg	aactccttta	aggetgeact	1320	
cageteeetg gecaageatg	gagagtatgc	tcctttcgcc	cgacttttga	acctttctgg	1380	
agtaaataat cttgagcatg	gtetttteee	tcaactatcg	gcaattgcac	tcggagtcgc	1440	
cacagcacac gggagtaccc	tcgcaggagt	aaatgttgga	gaacagtatc	aacaactcag	1500	
agaggctgcc actgaggctg	agaagcaact	ccaacaatat	gcagagtete	gcgaacttga	1560	
ccatcttgga cttgatgatc	aggaaaagaa	aattcttatg	aacttccatc	agaaaaagaa	1620	
cgaaatcagc ttccagcaaa	caaacgctat	ggtaactcta	agaaaagagc	gcctggccaa	1680	
gctgacagaa gctatcactg	ctgcgtcact	gcccaaaaca	agtggacatt	acgatgatga	1740	
tgacgacatt ccctttccag	gacccatcaa	tgatgacgac	aatcctggcc	atcaagatga	1800	
tgateegaet gaeteacagg	atacgaccat	tcccgatgtg	gtggttgatc	ccgatgatgg	1860	
aagctacggc gaataccaga	gttactcgga	aaacggcatg	aatgcaccag	atgacttggt	1920	
cctattcgat ctagacgagg	acgacgagga	cactaagcca	gtgcctaata	gatcgaccaa	1980	
gggtggacaa cagaagaaca	gtcaaaaggg	ccagcatata	gagggcagac	agacacaatc	2040	
caggccaatt caaaatgtcc	caggccctca	cagaacaatc	caccacgcca	gtgcgccact	2100	
cacggacaat gacagaagaa					2160	
aattaacgaa gaggcagacc					2220	
cttggagtca gatgatgaag	agcaggacag	ggacggaact	tccaaccgca	cacccactgt	2280	
cgccccaccg gctcccgtat					2340	
gcaacaagat caggaccaca	ctcaagaggc	caggaaccag	gacagtgaca	acacccagtc	2400	

agaacactct	tttgaggaga	tgtatcgcca	cattctaaga	tcacaggggc	catttgatgc	2460
tgttttgtat	tatcatatga	tgaaggatga	gcctgtagtt	ttcagtacca	gtgatggcaa	2520
agagtacacg	tatccagact	cccttgaaga	ggaatatcca	ccatggctca	ctgaaaaaga	2580
ggctatgaat	gaagagaata	gatttgttac	attggatggt	caacaatttt	attggccggt	2640
gatgaatcac	aagaataaat	tcatggcaat	cctgcaacat	catcagtgaa	tgagcatgga	2700
acaatgggat	gattcaaccg	acaaatagct	aacattaagt	agtcaaggaa	cgaaaacagg	2760
aagaattttt	gatgtctaag	gtgtgaatta	ttatcacaat	aaaagtgatt	cttatttttg	2820
aatttaaagc	tagcttatta	ttactagccg	tttttcaaag	ttcaatttga	gtettaatge	2880
aaataggcgt	taagccacag	ttatagccat	aattgtaact	caatattcta	actagcgatt	2940
tatctaaatt	aaattacatt	atgcttttat	aacttaccta	ctagcctgcc	caacatttac	3000
acgatcgttt	tataattaag	aaaaaactaa	tgatgaagat	taaaaccttc	atcatcctta	3060
cgtcaattga	attetetage	actcgaagct	tattgtcttc	aatgtaaaag	aaaagctggt	3120
ctaacaagat	gacaactaga	acaaagggca	ggggccatac	tgcggccacg	actcaaaacg	3180
acagaatgcc	aggccctgag	ctttcgggct	ggatctctga	gcagctaatg	accggaagaa	3240
ttcctgtaag	cgacatcttc	tgtgatattg	agaacaatcc	aggattatgc	tacgcatccc	3300
aaatgcaaca	aacgaagcca	aacccgaaga	cgcgcaacag	tcaaacccaa	acggacccaa	3360
tttgcaatca	tagttttgag	gaggtagtac	aaacattggc	ttcattggct	actgttgtgc	3420
aacaacaaac	catcgcatca	gaatcattag	aacaacgcat	tacgagtctt	gagaatggtc	3480
taaagccagt	ttatgatatg	gcaaaaacaa	tctcctcatt	gaacagggtt	tgtgctgaga	3540
tggttgcaaa	atatgatctt	ctggtgatga	caaccggtcg	ggcaacagca	accgctgcgg	3600
caactgaggc	ttattgggcc	gaacatggtc	aaccaccacc	tggaccatca	ctttatgaag	3660
aaagtgcgat	tcggggtaag	attgaatcta	gagatgagac	cgtccctcaa	agtgttaggg	3720
aggcattcaa	caatctaaac	agtaccactt	cactaactga	ggaaaatttt	gggaaacctg	3780
acatttcggc	aaaggatttg	agaaacatta	tgtatgatca	cttgcctggt	tttggaactg	3840
ctttccacca	attagtacaa	gtgatttgta	aattgggaaa	agatagcaac	tcattggaca	3900
tcattcatgc	tgagttccag	gccagcctgg	ctgaaggaga	ctctcctcaa	tgtgccctaa	3960
ttcaaattac	aaaaagagtt	ccaatcttcc	aagatgctgc	tccacctgtc	atccacatcc	4020
gctctcgagg	tgacattccc	cgagcttgcc	agaaaagctt	gcgtccagtc	ccaccatcgc	4080
ccaagattga	tcgaggttgg	gtatgtgttt	ttcagcttca	agatggtaaa	acacttggac	4140
tcaaaatttg	agccaatctc	ccttccctcc	gaaagaggcg	aataatagca	gaggetteaa	4200
ctgctgaact	atagggtacg	ttacattaat	gatacacttg	tgagtatcag	ccctggataa	4260
tataagtcaa	ttaaacgacc	aagataaaat	tgttcatatc	tcgctagcag	cttaaaatat	4320
aaatgtaata	ggagctatat	ctctgacagt	attataatca	attgttatta	agtaacccaa	4380
accaaaagtg	atgaagatta	agaaaaacct	acctcggctg	agagagtgtt	ttttcattaa	4440
ccttcatctt	gtaaacgttg	agcaaaattg	ttaaaaatat	gaggegggtt	atattgccta	4500
ctgetectee	tgaatatatg	gaggccatat	accctgtcag	gtcaaattca	acaattgcta	4560
gaggtggcaa	cagcaataca	ggcttcctga	caccggagtc	agtcaatggg	gacactccat	4620
cgaatccact	caggccaatt	gccgatgaca	ccatcgacca	tgccagccac	acaccaggca	4680

gtgtgtcatc	agcattcatc	cttgaagcta	tggtgaatgt	catatcgggc	cccaaagtgc	4740
taatgaagca	aattccaatt	tggcttcctc	taggtgtcgc	tgatcaaaag	acctacagct	4800
ttgactcaac	tacggccgcc	atcatgcttg	cttcatacac	tatcacccat	ttcggcaagg	4860
caaccaatcc	acttgtcaga	gtcaatcggc	tgggtcctgg	aatcccggat	catcccctca	4920
ggeteetgeg	aattggaaac	caggetttee	tccaggagtt	cgttcttccg	ccagtccaac	4980
taccccagta	tttcaccttt	gatttgacag	cactcaaact	gatcacccaa	ccactgcctg	5040
ctgcaacatg	gaccgatgac	actccaacag	gatcaaatgg	agcgttgcgt	ccaggaattt	5100
catttcatcc	aaaacttcgc	cccattcttt	tacccaacaa	aagtgggaag	aaggggaaca	5160
gtgccgatct	aacatctccg	gagaaaatcc	aagcaataat	gacttcactc	caggacttta	5220
agatcgttcc	aattgatcca	accaaaaata	tcatgggaat	cgaagtgcca	gaaactctgg	5280
tccacaagct	gaccggtaag	aaggtgactt	ctaaaaatgg	acaaccaatc	atccctgttc	5340
ttttgccaaa	gtacattggg	ttggacccgg	tggctccagg	agaceteace	atggtaatca	5400
cacaggattg	tgacacgtgt	catteteetg	caagtettee	agctgtgatt	gagaagtaat	5460
tgcaataatt	gactcagatc	cagttttata	gaatettete	agggatagtg	ataacatcta	5520
tttagtaatc	cgtccattag	aggagacact	tttaattgat	caatatacta	aaggtgcttt	5580
acaccattgt	ctttttctc	tcctaaatgt	agaacttaac	aaaagactca	taatatactt	5640
gtttttaaag	gattgattga	tgaaagatca	taactaataa	cattacaaat	aatcctacta	5700
taatcaatac	ggtgattcaa	atgttaatct	ttctcattgc	acatactttt	tgecettate	5760
ctcaaattgc	ctgcatgctt	acatctgagg	atagccagtg	tgacttggat	tggaaatgtg	5820
gagaaaaaat	cgggacccat	ttctaggttg	ttcacaatcc	aagtacagac	attgcccttc	5880
taattaagaa	aaaatcggcg	atgaagatta	agccgacagt	gagcgtaatc	ttcatctctc	5940
ttagattatt	tgttttccag	agtaggggtc	gtcaggtcct	tttcaatcgt	gtaaccaaaa	6000
taaactccac	tagaaggata	ttgtggggca	acaacacaat	gggcgttaca	ggaatattgc	6060
agttacctcg	tgatcgattc	aagaggacat	cattettet	ttgggtaatt	atccttttcc	6120
aaagaacatt	ttccatccca	cttggagtca	tccacaatag	cacattacag	gttagtgatg	6180
tcgacaaact	agtttgtcgt	gacaaactgt	catccacaaa	tcaattgaga	tcagttggac	6240
tgaatctcga	agggaatgga	gtggcaactg	acgtgccatc	tgcaactaaa	agatggggct	6300
tcaggtccgg	tgtcccacca	aaggtggtca	attatgaagc	tggtgaatgg	gctgaaaact	6360
gctacaatct	tgaaatcaaa	aaacctgacg	ggagtgagtg	tctaccagca	gcgccagacg	6420
ggattcgggg	cttcccccgg	tgccggtatg	tgcacaaagt	atcaggaacg	ggaccgtgtg	6480
ccggagactt	tgccttccat	aaagagggtg	ctttcttcct	gtatgatcga	cttgcttcca	6540
cagttatcta	ccgaggaacg	actttcgctg	aaggtgtcgt	tgcatttctg	atactgcccc	6600
aagctaagaa	ggacttcttc	agctcacacc	ccttgagaga	gccggtcaat	gcaacggagg	6660
acccgtctag	tggctactat	tctaccacaa	ttagatatca	ggctaccggt	tttggaacca	6720
atgagacaga	gtacttgttc	gaggttgaca	atttgaccta	cgtccaactt	gaatcaagat	6780
tcacaccaca	gtttctgctc	cagctgaatg	agacaatata	tacaagtggg	aaaaggagca	6840
ataccacggg	aaaactaatt	tggaaggtca	accccgaaat	tgatacaaca	atcggggagt	6900
gggcettetg	ggaaactaaa	aaaacctcac	tagaaaaatt	cgcagtgaag	agttgtcttt	6960

	tcaaacggag					7020
cgacccaggg	accaacacaa	caactgaaga	ccacaaaatc	atggcttcag	aaaatteete	7080
tgcaatggtt	caagtgcaca	gtcaaggaag	ggaagctgca	gtgtcgcatc	taacaaccct	7140
tgccacaatc	tccacgagtc	cccaatccct	cacaaccaaa	ccaggtccgg	acaacagcac	7200
ccataataca	cccgtgtata	aacttgacat	ctctgaggca	actcaagttg	aacaacatca	7260
ccgcagaaca	gacaacgaca	gcacagcete	cgacactccc	tctgccacga	ccgcagccgg	7320
acccccaaaa	gcagagaaca	ccaacacgag	caagagcact	gacttcctgg	accccgccac	7380
cacaacaagt	ccccaaaacc	acagcgagac	cgctggcaac	aacaacactc	atcaccaaga	7440
taccggagaa	gagagtgcca	gcagcgggaa	gctaggctta	attaccaata	ctattgctgg	7500
agtcgcagga	ctgatcacag	gcgggagaag	aactcgaaga	gaagcaattg	tcaatgctca	7560
acccaaatgc	aaccctaatt	tacattactg	gactactcag	gatgaaggtg	ctgcaatcgg	7620
actggcctgg	ataccatatt	tcgggccagc	agccgaggga	atttacatag	aggggctaat	7680
gcacaatcaa	gatggtttaa	tctgtgggtt	gagacagctg	gccaacgaga	cgactcaagc	7740
tcttcaactg	ttcctgagag	ccacaactga	gctacgcacc	ttttcaatcc	tcaaccgtaa	7800
ggcaattgat	ttcttgctgc	agcgatgggg	cggcacatgc	cacattctgg	gaccggactg	7860
ctgtatcgaa	ccacatgatt	ggaccaagaa	cataacagac	aaaattgatc	agattattca	7920
tgattttgtt	gataaaaccc	ttccggacca	gggggacaat	gacaattggt	ggacaggatg	7980
gagacaatgg	ataccggcag	gtattggagt	tacaggcgtt	ataattgcag	ttatcgcttt	8040
attctgtata	tgcaaatttg	tcttttagtt	tttcttcaga	ttgcttcatg	gaaaagctca	8100
gcctcaaatc	aatgaaacca	ggatttaatt	atatggatta	cttgaatcta	agattacttg	8160
acaaatgata	atataataca	ctggagcttt	aaacatagcc	aatgtgattc	taactccttt	8220
aaactcacag	ttaatcataa	acaaggtttg	acatcaatct	agttatctct	ttgagaatga	8280
taaacttgat	gaagattaag	aaaaaggtaa	tctttcgatt	atctttaatc	ttcatccttg	8340
attctacaat	catgacagtt	gtctttagtg	acaagggaaa	gaagcetttt	tattaagttg	8400
taataatcag	atctgcgaac	cggtagagtt	tagttgcaac	ctaacacaca	taaagcattg	8460
gtcaaaaagt	caatagaaat	ttaaacagtg	agtggagaca	acttttaaat	ggaagcttca	8520
tatgagagag	gacgcccacg	agctgccaga	cagcattcaa	gggatggaca	cgaccaccat	8580
gttcgagcac	gatcatcatc	cagagagaat	tatcgaggtg	agtaccgtca	atcaaggagc	8640
gcctcacaag	tgcgcgttcc	tactgtattt	cataagaaga	gagttgaacc	attaacagtt	8700
cctccagcac	ctaaagacat	atgtccgacc	ttgaaaaaag	gatttttgtg	tgacagtagt	8760
ttttgcaaaa	aagatcacca	gttggagagt	ttaactgata	gggaattact	cctactaatc	8820
gcccgtaaga	cttgtggatc	agtagaacaa	caattaaata	taactgcacc	caaggactcg	8880
cgcttagcaa	atccaacggc	tgatgatttc	cagcaagagg	aaggtccaaa	aattaccttg	8940
ttgacactga	tcaagacggc	agaacactgg	gcgagacaag	acatcagaac	catagaggat	9000
tcaaaattaa	gagcattgtt	gactctatgt	gctgtgatga	cgaggaaatt	ctcaaaatcc	9060
cagctgagtc	ttttatgtga	gacacaccta	aggcgcgagg	ggcttgggca	agatcaggca	9120
gaacccgttc	tcgaagtata	tcaacgatta	cacagtgata	aaggaggcag	ttttgaagct	9180
gcactatggc	aacaatggga	ccgacaatcc	ctaattatgt	ttatcactgc	attettgaat	9240

attgctctcc	agttaccgtg	tgaaagttct	gctgtcgttg	tttcagggtt	aagaacattg	9300
gttcctcaat	cagataatga	ggaagcttca	accaacccgg	ggacatgctc	atggtctgat	9360
gagggtaccc	cttaataagg	ctgactaaaa	cactatataa	ccttctactt	gatcacaata	9420
ctccgtatac	ctatcatcat	atatttaatc	aagacgatat	cctttaaaac	ttattcagta	9480
ctataatcac	tctcgtttca	aattaataag	atgtgcatga	ttgccctaat	atatgaagag	9540
gtatgataca	accctaacag	tgatcaaaga	aaatcataat	ctcgtatcgc	tcgtaatata	9600
acctgccaag	catacctctt	gcacaaagtg	attettgtae	acaaataatg	ttttactcta	9660
caggaggtag	caacgatcca	tcccatcaaa	aaataagtat	ttcatgactt	actaatgatc	9720
tcttaaaata	ttaagaaaaa	ctgacggaac	ataaattett	tatgcttcaa	gctgtggagg	9780
aggtgtttgg	tattggctat	tgttatatta	caatcaataa	caagcttgta	aaaatattgt	9840
tcttgtttca	agaggtagat	tgtgaccgga	aatgctaaac	taatgatgaa	gattaatgcg	9900
gaggtctgat	aagaataaac	cttattattc	agattaggcc	ccaagaggca	ttcttcatct	9960
ccttttagca	aagtactatt	tcagggtagt	ccaattagtg	gcacgtcttt	tagctgtata	10020
tcagtcgccc	ctgagatacg	ccacaaaagt	gtctctaagc	taaattggtc	tgtacacatc	10080
ccatacattg	tattaggggc	aataatatct	aattgaactt	agccgtttaa	aatttagtgc	10140
ataaatctgg	gctaacacca	ccaggtcaac	tccattggct	gaaaagaagc	ttacctacaa	10200
cgaacatcac	tttgagcgcc	ctcacaatta	aaaaatagga	acgtcgttcc	aacaatcgag	10260
cgcaaggttt	caaggttgaa	ctgagagtgt	ctagacaaca	aaatattgat	actccagaca	10320
ccaagcaaga	cctgagaaaa	aaccatggct	aaagctacgg	gacgatacaa	tctaatatcg	10380
cccaaaaagg	acctggagaa	aggggttgtc	ttaagcgacc	tctgtaactt	cttagttagc	10440
caaactattc	aggggtggaa	ggtttattgg	gctggtattg	agtttgatgt	gactcacaaa	10500
ggaatggccc	tattgcatag	actgaaaact	aatgactttg	cccctgcatg	gtcaatgaca	10560
aggaatctct	ttcctcattt	atttcaaaat	ccgaattcca	caattgaatc	accgctgtgg	10620
gcattgagag	tcatccttgc	agcagggata	caggaccagc	tgattgacca	gtctttgatt	10680
gaaccettag	caggagccct	tggtctgatc	tctgattggc	tgctaacaac	caacactaac	10740
catttcaaca	tgcgaacaca	acgtgtcaag	gaacaattga	gcctaaaaat	gctgtcgttg	10800
attcgatcca	atattctcaa	gtttattaac	aaattggatg	ctctacatgt	cgtgaactac	10860
aacggattgt	tgagcagtat	tgaaattgga	actcaaaatc	atacaatcat	cataactcga	10920
actaacatgg	gttttctggt	ggagetecaa	gaacccgaca	aatcggcaat	gaaccgcatg	10980
aagcctgggc	cggcgaaatt	ttccctcctt	catgagtcca	cactgaaagc	atttacacaa	11040
ggatcctcga	cacgaatgca	aagtttgatt	cttgaattta	atagetetet	tgctatctaa	11100
ctaaggtaga	atacttcata	ttgagctaac	tcatatatgc	tgactcaata	gttatcttga	11160
catctctgct	ttcataatca	gatatataag	cataataaat	aaatactcat	atttcttgat	11220
aatttgttta	accacagata	aatcctcact	gtaagccagc	ttccaagttg	acacccttac	11280
aaaaaccagg	actcagaatc	cctcaaacaa	gagattccaa	gacaacatca	tagaattgct	11340
ttattatatg	aataagcatt	ttatcaccag	aaatcctata	tactaaatgg	ttaattgtaa	11400
ctgaacccgc	aggtcacatg	tgttaggttt	cacagattct	atatattact	aactctatac	11460
tcgtaattaa	cattagataa	gtagattaag	aaaaaagcct	gaggaagatt	aagaaaaact	11520

-continued

gettattggg tettteegtg ttttagatga ageagttgaa attetteete ttgatattaa 11580 atggctacac aacataccca atacccagac gctaggttat catcaccaat tgtattggac 11640 caatgtgacc tagtcactag agettgeggg ttatatteat catacteect taateegeaa 11700 ctacgcaact gtaaactccc gaaacatatc taccgtttga aatacgatgt aactgttacc 11760 aagttettga gtgatgtace agtggegaea ttgeeeatag attteatagt eccagttett 11820 ctcaaggcac tgtcaggcaa tggattctgt cctgttgagc cgcggtgcca acagttctta 11880 gatgaaatca ttaagtacac aatgcaagat gctctcttct tgaaatatta tctcaaaaat 11940 gtgggtgctc aagaagactg tgttgatgaa cactttcaag agaaaatctt atcttcaatt 12000 cagggcaatg aatttttaca tcaaatgttt ttctggtatg atctggctat tttaactcga 12060 aggggtagat taaatcgagg aaactctaga tcaacatggt ttgttcatga tgatttaata 12120 gacatettag getatgggga etatgttttt tggaagatee eaattteaat gttaceaetg 12180 aacacacaag gaatcccccca tgctgctatg gactggtatc aggcatcagt attcaaagaa 12240 gcggttcaag ggcatacaca cattgtttct gtttctactg ccgacgtctt gataatgtgc 12300 aaagatttaa ttacatgtcg attcaacaca actctaatct caaaaatagc agagattgag 12360 gatccagttt gttctgatta tcccaatttt aagattgtgt ctatgcttta ccagagcgga 12420 gattacttac tctccatatt agggtctgat gggtataaaa ttattaagtt cctcgaacca 12480 ttgtgcttgg ccaaaattca attatgctca aagtacactg agaggaaggg ccgattctta 12540 acacaaatgc atttagctgt aaatcacacc ctagaagaaa ttacagaaat gcgtgcacta 12600 aageetteae aggeteaaaa gateegtgaa tteeatagaa eattgataag getggagatg 12660 acgccacaac aactttgtga gctattttcc attcaaaaac actggggggca tcctgtgcta 12720 catagtgaaa cagcaatcca aaaagttaaa aaacatgcta cggtgctaaa agcattacgc 12780 cctatagtga ttttcgagac atactgtgtt tttaaatata gtattgccaa acattatttt 12840 gatagtcaag gatcttggta cagtgttact tcagatagga atctaacacc gggtcttaat 12900 tettatatea aaagaaatea atteeeteeg ttgeeaatga ttaaagaaet aetatgggaa 12960 ttttaccacc ttgaccaccc tccacttttc tcaaccaaaa ttattagtga cttaagtatt 13020 tttataaaag acagagctac cgcagtagaa aggacatgct gggatgcagt attcgagcct 13080 aatgttctag gatataatcc acctcacaaa tttagtacta aacgtgtacc ggaacaattt 13140 ttagagcaag aaaacttttc tattgagaat gttctttcct acgcacaaaa actcgagtat 13200 ctactaccac aatatcggaa cttttctttc tcattgaaag agaaagagtt gaatgtaggt 13260 agaaccttcg gaaaattgcc ttatccgact cgcaatgttc aaacactttg tgaagctctg 13320 ttagctgatg gtcttgctaa agcatttcct agcaatatga tggtagttac ggaacgtgag 13380 caaaaagaaa gcttattgca tcaagcatca tggcaccaca caagtgatga ttttggtgaa 13440 catgccacag ttagagggag tagctttgta actgatttag agaaatacaa tcttgcattt 13500 agatatgagt ttacagcacc ttttatagaa tattgcaacc gttgctatgg tgttaagaat 13560 gtttttaatt ggatgcatta tacaatccca cagtgttata tgcatgtcag tgattattat 13620 aatccaccac ataacctcac actggagaat cgagacaacc cccccgaagg gcctagttca 13680 tacaggggtc atatgggagg gattgaagga ctgcaacaaa aactctggac aagtatttca 13740 tgtgctcaaa tttctttagt tgaaattaag actggtttta agttacgctc agctgtgatg 13800

-continued

ggtgacaatc agtgcattac tgttttatca gtcttcccct tagagactga cgcagacgag 13860 caggaacaga gcgccgaaga caatgcagcg agggtggccg ccagcctagc aaaagttaca 13920 agtgcctgtg gaatcttttt aaaacctgat gaaacatttg tacattcagg ttttatctat 13980 tttggaaaaa aacaatattt gaatggggtc caattgcctc agtcccttaa aacggctaca 14040 agaatggcac cattgtctga tgcaattttt gatgatcttc aagggaccct ggctagtata 14100 ggcactgett ttgagegate catetetgag acaegaeata tettteettg caggataace 14160 gcagetttee atacgttttt tteggtgaga atettgeaat ateateatet egggtteaat 14220 aaaggttttg accttggaca gttaacactc ggcaaacctc tggatttcgg aacaatatca 14280 ttggcactag cggtaccgca ggtgcttgga gggttatcct tcttgaatcc tgagaaatgt 14340 ttctaccgga atctaggaga tccagttacc tcaggcttat tccagttaaa aacttatctc 14400 cgaatgattg agatggatga tttattctta cctttaattg cgaagaaccc tgggaactgc 14460 actgccattg actttgtgct aaatcctagc ggattaaatg tccctgggtc gcaagactta 14520 acttcatttc tgcgccagat tgtacgcagg accatcaccc taagtgcgaa aaacaaactt 14580 attaatacct tatttcatgc gtcagctgac ttcgaagacg aaatggtttg taaatggcta 14640 ttatcatcaa ctcctgttat gagtcgtttt gcggccgata tcttttcacg cacgccgagc 14700 gggaagcgat tgcaaattct aggatacctg gaaggaacac gcacattatt agcctctaag 14760 atcatcaaca ataatacaga gacaccggtt ttggacagac tgaggaaaat aacattgcaa 14820 aggtggagcc tatggtttag ttatcttgat cattgtgata atatcctggc ggaggcttta 14880 acccaaataa cttgcacagt tgatttagca cagattctga gggaatattc atgggctcat 14940 attttagagg gaagacctct tattggagcc acactcccat gtatgattga gcaattcaaa 15000 gtgttttggc tgaaacccta cgaacaatgt ccgcagtgtt caaatgcaaa gcaaccaggt 15060 gggaaaccat tcgtgtcagt ggcagtcaag aaacatattg ttagtgcatg gccgaacgca 15120 tcccgaataa gctggactat cggggatgga atcccataca ttggatcaag gacagaagat 15180 aagataggac aacctgctat taaaccaaaa tgtccttccg cagccttaag agaggccatt 15240 gaattggcgt cccgtttaac atgggtaact caaggcagtt cgaacagtga cttgctaata 15300 aaaccatttt tggaagcacg agtaaattta agtgttcaag aaatacttca aatgacccct 15360 tcacattact caggaaatat tgttcacagg tacaacgatc aatacagtcc tcattctttc 15420 atggccaatc gtatgagtaa ttcagcaacg cgattgattg tttctacaaa cactttaggt 15480 gagttttcag gaggtggcca gtctgcacgc gacagcaata ttattttcca gaatgttata 15540 aattatgcag ttgcactgtt cgatattaaa tttagaaaca ctgaggctac agatatccaa 15600 tataatcgtg ctcaccttca tctaactaag tgttgcaccc gggaagtacc agctcagtat 15660 ttaacataca catctacatt ggatttagat ttaacaagat accgagaaaa cgaattgatt 15720 tatgacagta atcctctaaa aggaggactc aattgcaata tctcattcga taatccattt 15780 ttccaaggta aacggctgaa cattatagaa gatgatctta ttcgactgcc tcacttatct 15840 ggatgggagc tagccaagac catcatgcaa tcaattattt cagatagcaa caattcatct 15900 acagacccaa ttagcagtgg agaaacaaga tcattcacta cccatttctt aacttatccc 15960 aagataggac ttctgtacag ttttggggcc tttgtaagtt attatcttgg caatacaatt 16020 cttcggacta agaaattaac acttgacaat tttttatatt acttaactac tcaaattcat 16080

-continued

aatctaccac atcgctcatt gcgaatactt aagccaacat tcaaacatgc aagcgttatg 16140 tcacggttaa tgagtattga tcctcatttt tctatttaca taggcggtgc tgcaggtgac 16200 agaggactet cagatgegge caggttattt ttgagaaegt ceattteate ttttettaea 16260 tttgtaaaag aatggataat taatcgcgga acaattgtcc ctttatggat agtatatccg 16320 ctagagggtc aaaacccaac acctgtgaat aattttctct atcagatcgt agaactgctg 16380 gtgcatgatt catcaagaca acaggctttt aaaactacca taagtgatca tgtacatcct 16440 cacgacaatc ttgtttacac atgtaagagt acagccagca atttcttcca tgcatcattg 16500 gcgtactgga ggagcagaca cagaaacagc aaccgaaaat acttggcaag agactcttca 16560 actggatcaa gcacaaacaa cagtgatggt catattgaga gaagtcaaga acaaaccacc 16620 agagatccac atgatggcac tgaacggaat ctagtcctac aaatgagcca tgaaataaaa 16680 agaacgacaa ttccacaaga aaacacgcac cagggtccgt cgttccagtc ctttctaagt 16740 gactetgett gtggtacage aaateeaaaa etaaattteg ategategag acacaatgtg 16800 aaatttcagg atcataactc ggcatccaag agggaaggtc atcaaataat ctcacaccgt 16860 ctagtcctac ctttctttac attatctcaa gggacacgcc aattaacgtc atccaatgag 16920 tcacaaaccc aagacgagat atcaaagtac ttacggcaat tgagatccgt cattgatacc 16980 acagtttatt gtagatttac cggtatagtc tcgtccatgc attacaaact tgatgaggtc 17040 ctttgggaaa tagagagttt caagtcggct gtgacgctag cagagggaga aggtgctggt 17100 gccttactat tgattcagaa ataccaagtt aagaccttat ttttcaacac gctagctact 17160 gagtccagta tagagtcaga aatagtatca ggaatgacta ctcctaggat gcttctacct 17220 gttatgtcaa aattccataa tgaccaaatt gagattattc ttaacaactc agcaagccaa 17280 ataacagaca taacaaatcc tacttggttt aaagaccaaa gagcaaggct acctaagcaa 17340 gtcgaggtta taaccatgga tgcagagaca acagagaata taaacagatc gaaattgtac 17400 gaagctgtat ataaattgat cttacaccat attgatccta gcgtattgaa agcagtggtc 17460 cttaaagtct ttctaagtga tactgagggt atgttatggc taaatgataa tttagccccg 17520 ttttttgcca ctggttattt aattaagcca ataacgtcaa gtgctagatc tagtgagtgg 17580 tatetttgte tgacgaaett ettateaaet acaegtaaga tgeeaeaeea aaaceatete 17640 agttgtaaac aggtaatact tacggcattg caactgcaaa ttcaacgaag cccatactgg 17700 ctaagtcatt taactcagta tgctgactgt gagttacatt taagttatat ccgccttggt 17760 tttccatcat tagagaaagt actataccac aggtataacc tcgtcgattc aaaaagaggt 17820 ccactagtct ctatcactca gcacttagca catcttagag cagagattcg agaattaact 17880 aatgattata atcaacagcg acaaagtcgg actcaaacat atcactttat tcgtactgca 17940 aaaggacgaa tcacaaaact agtcaatgat tatttaaaat tctttcttat tgtgcaagca 18000 ttaaaacata atgggacatg gcaagctgag tttaagaaat taccagagtt gattagtgtg 18060 tgcaataggt tctaccatat tagagattgc aattgtgaag aacgtttctt agttcaaacc 18120 ttatatttac atagaatgca ggattctgaa gttaagctta tcgaaaggct gacagggctt 18180 ctgagtttat ttccggatgg tctctacagg tttgattgaa ttaccgtgca tagtatcctg 18240 atacttgcaa aggttggtta ttaacataca gattataaaa aactcataaa ttgctctcat 18300 acatcatatt gatctaatct caataaacaa ctatttaaat aacgaaagga gtccctatat 18360

-continued

81

tatatactat atttageete teteeetge tgataateaa aaaatteae atgeageatg 18420 tgtgacatat taetgeegea atgaattaa egeaacataa taaaeteege aetettata 18480 attaagettt aaegaaaggt etgggeteat attgttattg atataataat gttgtateaa 18540 tateetgtea gatggaatag tgttttggtt gataacaea ettettaaaa eaaaattgat 18600 etttaagatt aagttttta taattateat taetttaatt tgtegttta aaaaeggtga 18660 tageettaat etttgtgtaa aataagagat taggtgtaat aaeettaaea tttttgteta 18720 gaaataeet etttaeaa gaatgataaa attaaaagaa aaggeaggae tgtaaaatea 18840 gaeaategete eegeetee gaaggeetege eagaataaee gttgeaaaaa ggatteetgg 18900 aaaaatggte geecaeaaaa atttaaaaat aaatetatt ettettttt gtgtgteea 18900

<210> SEQ ID NO 21 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Sudan ebola BMG <220> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (8)..(8) <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (8)..(8) <223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 21

gccatggntt caggtttgag

20

<210> SEQ ID NO 22 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> FEATURE: <221> NAME/KEY: modified_base <222> LOCATION: (4)..(4) <223> OTHER INFORMATION: I <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (4)..(4) <223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 22

<210> SEO ID NO 23

ggtnacattg ggcaacaatt ca

22

<211> LENGTH: 26 <212> TTPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR probe for Sudan ebola BMG <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)...(1) <223> OTHER INFORMATION: Fluorescein (FAM) <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (26)...(26) <223> OTHER INFORMATION: Black hole quencher dye (BHQ1)

-continued	
<400> SEQUENCE: 23	
acggtgcaca ttctcctttt ctcgga	26
<210> SEQ ID NO 24 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Ebola Bundibugyo fragment A	
<400> SEQUENCE: 24	
gtgagacaaa gaatcattcc tg	22
<pre><210> SEQ ID NO 25 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Ebola Bundibugyo fragment A</pre>	
<400> SEQUENCE: 25	
catcaattgc tcagagatcc acc	23
<210> SEQ ID NO 26 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Ebola Bundibugyo fragment B	
<400> SEQUENCE: 26	
ccaacaacac tgcatgtaag t	21
<210> SEQ ID NO 27 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Ebola Bundibugyo fragment B	
<400> SEQUENCE: 27	
aggtcgcgtt aatcttcatc	20
<210> SEQ ID NO 28 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Ebola Bundibugyo fragment C	
<400> SEQUENCE: 28	
gatggttgag ttactttccg g	21
<210> SEQ ID NO 29 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Ebola Bundibugyo	

-continued fragment C <400> SEQUENCE: 29 gtcttgagtc atcaatgccc 20 <210> SEQ ID NO 30 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Ebola Bundibugyo fragment D <400> SEQUENCE: 30 ccaccagcac caaaggac 18 <210> SEQ ID NO 31 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Ebola Bundibugyo fragment D <400> SEQUENCE: 31 ctatcggcaa tgtaactatt gg 22 <210> SEQ ID NO 32 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Ebola Bundibugyo fragment E <400> SEQUENCE: 32 gccgttgtag aggacacac 19 <210> SEQ ID NO 33 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Ebola Bundibugyo fragment E <400> SEQUENCE: 33 cacattaaat tgttctaaca tgcaag 26 <210> SEQ ID NO 34 <211> LENGTH: 23 <211> ELECTIV La <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Ebola Bundibugyo fragment F <400> SEQUENCE: 34 cctaggttat ttagaaggga cta 23 <210> SEQ ID NO 35 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued
<pre><220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Ebola Bundibugyo fragment F</pre>
<400> SEQUENCE: 35
ggtagatgta ttgacagcaa tatc 24
<210> SEQ ID NO 36 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer for Ebola Uganda 692(-)
<400> SEQUENCE: 36
acaaaagct atctgcacta t 21
<210> SEQ ID NO 37 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR primer for Ebola Uganda 18269(+)
<400> SEQUENCE: 37
ctcagaagca aaattaatgg 20
<210> SEQ ID NO 38 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote dIviore ebola virus fragment A
<400> SEQUENCE: 38
gtgtgcgaat aactatgagg aag 23
<210> SEQ ID NO 39 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment A
<400> SEQUENCE: 39
gtctgtgcaa tgttgatgaa gg 22
<210> SEQ ID NO 40 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote dIviore ebola virus fragment B
<400> SEQUENCE: 40
catgaaaacc acactcaaca ac 22
<210> SEQ ID NO 41 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

<pre><220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment B</pre>	
<400> SEQUENCE: 41	
gttgccttaa tcttcatcaa gttc 24	
<210> SEQ ID NO 42 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote dIviore ebola virus fragment C	
<400> SEQUENCE: 42	
ggctataatg aattteetee ag 22	
<210> SEQ ID NO 43 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for ebola cote dIviore virus fragment C	
<400> SEQUENCE: 43	
caagtgtatt tgtggteeta ge 22	
<210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment C	
<400> SEQUENCE: 44	
gctggaatag gaatcacagg 20	
<210> SEQ ID NO 45 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment D	
<400> SEQUENCE: 45	
cggtagtcta cagttcttta g 21	
<210> SEQ ID NO 46 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote diviore ebola virus fragment E	
<400> SEQUENCE: 46	
gacaaagaga ttagattagc tatag 25	
<210> SEQ ID NO 47 <211> LENGTH: 22	

-continued

<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment E <400> SEQUENCE: 47 gtaatgagaa ggtgtcattt gg 22 <210> SEQ ID NO 48 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote dIviore ebola virus fraqment F <400> SEQUENCE: 48 cacgacttag ttggacaatt gg 2.2 <210> SEQ ID NO 49 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment F <400> SEQUENCE: 49 cagacactaa ttagatctgg aag 23 <210> SEQ ID NO 50 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote dIviore ebola virus fragment G <400> SEQUENCE: 50 21 cggacacaca aaaagaawra a <210> SEQ ID NO 51 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote diviore ebola virus fragment G <400> SEQUENCE: 51 cgttcttgac cttagcagtt c 21 <210> SEQ ID NO 52 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote diviore ebola virus fragment H <400> SEQUENCE: 52 22 gcactataag ctcgatgaag tc

-continued

<210> SEQ ID NO 53 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote dIviore ebola virus fragment H <400> SEQUENCE: 53 tggacacaca aaaargaraa 20 <210> SEQ ID NO 54 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for Cote diviore ebola virus gap between fragments C and D <400> SEQUENCE: 54 21 ctgagaggat ccagaagaaa g <210> SEO ID NO 55 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR reverse primer for Cote d'Iviore ebola virus gap between fragments C and D <400> SEQUENCE: 55 22 gtgtaagegt tgatataeet ee <210> SEQ ID NO 56 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for ebola uganda virus EboU965(+) <400> SEQUENCE: 56 gagaaaaggc ctgtctggag aa 22 <210> SEQ ID NO 57 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR forward primer for ebola uganda virus EboU1039(-) <400> SEQUENCE: 57 tcgggtattg aatcagacct tgtt 24 <210> SEQ ID NO 58 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR probe for ebola uganda virus EboU989 <400> SEQUENCE: 58 26 ttcaacgaca aatccaagtg cacgca

-continued

<210> SEQ ID NO 59 <211> LENGTH: 302 <212> TYPE: PRT <213> ORGANISM: Bundibugyo ebolavirus <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: SSGP viral protein <400> SEQUENCE: 59 Met Val Thr Ser Gly Ile Leu Gln Leu Pro Arg Glu Arg Phe Arg Lys Thr Ser Phe Phe Val Trp Val Ile Ile Leu Phe His Lys Val Phe Pro Ile Pro Leu Gly Val Val His Asn Asn Thr Leu Gln Val Ser Asp Ile Asp Lys Leu Val Cys Arg Asp Lys Leu Ser Ser Thr Ser Gln Leu Lys Ser Val Gly Leu Asn Leu Glu Gly Asn Gly Val Ala Thr Asp Val Pro Thr Ala Thr Lys Arg Trp Gly Phe Arg Ala Gly Val Pro Pro Lys Val Val Asn Tyr Glu Ala Gly Glu Trp Ala Glu Asn Cys Tyr Asn Leu Asp Ile Lys Lys Ala Asp Gly Ser Glu Cys Leu Pro Glu Ala Pro Glu Gly Val Arg Gly Phe Pro Arg Cys Arg Tyr Val His Lys Val Ser Gly Thr Gly Pro Cys Pro Glu Gly Tyr Ala Phe His Lys Glu Gly Ala Phe Phe Leu Tyr Asp Arg Leu Ala Ser Thr Ile Ile Tyr Arg Ser Thr Thr Phe Ser Glu Gly Val Val Ala Phe Leu Ile Leu Pro Glu Thr Lys Lys Asp Phe Phe Gln Ser Pro Pro Leu His Glu Pro Ala Asn Met Thr Thr Asp Pro Ser Ser Tyr Tyr His Thr Val Thr Leu Asn Tyr Val Ala Asp Asn Phe Gly Thr Asn Met Thr Asn Phe Leu Phe Gln Val Asp His Leu Thr Tyr Val Gln Leu Glu Pro Arg Phe Thr Pro Gln Phe Leu Val Gln Leu Asn Glu Thr Ile Tyr Thr Asn Gly Arg Arg Ser Asn Thr Thr Gly Thr Leu Ile Trp Lys Val Asn Pro Thr Val Asp Thr Gly Val Gly Glu Trp Ala Phe Trp Glu Asn Lys Lys Leu His Lys Asn Pro Phe Lys

1. An isolated hEbola virus comprising a nucleic acid molecule comprising a nucleotide sequence of:

a) a nucleotide sequence set forth in SEQ ID NOS: 1 or 10;b) a nucleotide sequence hybridizing under stringent con-

- ditions to SEQ ID NOS: 1 or 10; or
- c) a nucleotide sequence of at least 70%-99% identity to the SEQ ID NOS: 1 or 10, with the proviso that said nucleotide sequence is not SEQ ID NO: 20.

2. An isolated hEbola virus having Centers for Disease Control Deposit Accession No. 200706291.

3. The hEbola virus of claim 1 which is killed.

4. The hEbola virus of claim **1** which is an attenuated hEbola virus.

5. The virus of claim **4** wherein at least one property of the attenuated hEbola virus is reduced from among infectivity, replication ability, protein synthesis ability, assembling ability or cytopathic effect.

6. An isolated nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS: 1 or 10 or a complement thereof, or a fragment thereof wherein said fragment comprises a nucleotide sequence of between 4 and 4900 contiguous nucleotides of the nucleotide sequence of SEQ ID NOS: 1 or 10, or a complement thereof; with the proviso that said nucleotide sequence is not comprised by the nucleotide sequence set forth in SEQ ID NO: 20; or between 5500 and 6600 contiguous nucleotides of the nucleotide sequence of SEQ ID NOS: 1 or 10, or a complement thereof.

7. The isolated nucleic acid molecule of claim 6 comprising a nucleotide sequence of between 4 and 4900 contiguous nucleotides of the nucleotide sequence of SEQ ID NOS: 1 or 10, or a complement thereof; with the proviso that said nucleotide sequence is not comprised by the nucleotide sequence set forth in SEQ ID NO: 20; or between 5500 and 6600 contiguous nucleotides of the nucleotide sequence of SEQ ID NOS: 1 or 10, or a complement thereof.

8. The isolated nucleic acid molecule of claim **7** comprising a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 2-9, 59, or SEQ ID NO: 11-19 or a complement thereof.

9. An isolated RNA or DNA nucleic acid molecule which hybridizes under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NOS: 1 or 10 or a complement thereof.

10. An isolated polypeptide encoded by the nucleic acid molecule of claim **7**.

11. The polypeptide of claim 10 comprising the amino acid of:

- a) an amino acid sequence set forth in any of SEQ ID NOS: 2-19, or 59; or
- b) an amino acid sequence that has 70%-99% homology to the amino acid sequence of (a).
- 12. The polypeptide of claim 10 wherein the amino acid sequence has
- 5 to 250 contiguous amino acid residues of the amino acid sequence of SEQ ID NOS: 5 or 18 (VP24);
- 5 to 280 contiguous residues of the amino acid sequence of SEQ ID NOS: 6 or 17 (VP30);
- 5 to 320 contiguous residues of the amino acid sequence of SEQ ID NOS: 8 or 13 (VP40);
- 5 to 340 contiguous residues of the amino acid sequence of SEQ ID NOS: 7 or 12 (VP35);
- 5 to 370 contiguous residues of the amino acid sequence of SEQ ID NOS: 4 or 15 (SGP);
- 5 to 370 contiguous residues of the amino acid sequence of SEQ ID NOS: 59 or 16 (SSGP);
- 5 to 670 contiguous residues of the amino acid sequence of SEQ ID NOS: 9 or 14 (GP);
- 5 to 730 contiguous residues of the amino acid sequence of SEQ ID NOS: 3 or 11 (NP); or
- 5 to 2200 contiguous residues of the amino acid sequence of SEQ ID NOS: 2 or 19 (L).
- 13. (canceled)
- 14. (canceled)
- 15. (canceled)
- 16. (canceled)
- 17. (canceled)
- 18. (canceled)
- 19. (canceled)

20. The hEbola virus of claims **3** or **4**, or a protein extract therefrom, and a pharmaceutically acceptable carrier.

21. (canceled)

22. The nucleic acid molecule of claims 6 or 9, and a pharmaceutically acceptable carrier.

- 23. (canceled)
- 24. (canceled)
- 25. (canceled)
- 26. (canceled)
- 27. (canceled)
- 28. (canceled)
- 29. (canceled)
- 30. (canceled)

* * * * *