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ABSTRACT

Introduction: Nipah virus is a high-consequence pathogen that causes sporadic outbreaks with high
mortality, and there are currently no vaccines or therapeutics available for Nipah. Vaccine development
against Nipah faces challenges due to its current epidemiology with limited outbreak sizes, which
impedes the feasibility of conducting vaccine efficacy trials focused on disease endpoints.

Areas covered: We review the progress of Nipah vaccine candidates in human clinical trials and
highlight the challenges in evaluating the vaccine efficacy due to the sporadic nature of Nipah
outbreaks, given the epidemic potential of Nipah virus and its implications for pandemic preparedness.
We examine the alternative regulatory pathways, including the US FDA’s Animal Rule and EMA’s
conditional marketing authorization, which permit vaccine approval based on surrogate markers rather
than efficacy data from the large-scale Phase-3 efficacy trials. The need for standardized immune
surrogate markers is emphasized, alongside calls for international collaboration to develop such end-
points and manage stockpile strategies.

Expert opinion: We recommend alignment among vaccine developers, regulators, and global health
stakeholders to incentivize Nipah vaccine development and approval through alternative regulatory
pathways, as well as ensuring epidemic preparedness via strategic vaccine stockpiling and response
through targeted deployment strategies.
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1. Introduction
of cases in Bangladesh and over 50% in India resulted from

Nipah virus (Henipavirus nipahense) (NiV), a zoonotic, sin-
gle-stranded negative-sense RNA virus belongs to the genus
Henipavirus in the family Paramyxoviridae. It was first identi-
fied during outbreaks in Malaysia and Singapore in 1999,
primarily affecting pig farmers and abattoir workers [1-3].
Nipah virus infections in humans can cause severe neurolo-
gical and respiratory illnesses, with symptoms ranging from
fever and headache to acute encephalitis [4]. Since 2001,
sporadic but recurrent outbreaks have been reported, parti-
cularly in Bangladesh and India, where person-to-person
transmission has been reported [5-8]. The initial outbreaks
in Malaysia and Singapore were attributed to the NiV-
Malaysia clade (NiVy), which predominantly spread through
close contact with infected pigs, with no evidence of sus-
tained person-to-person transmission [9,10]. In contrast, out-
breaks in Bangladesh and India have been linked to the NiV-
Bangladesh clade (NiVg), which exhibits a higher potential
for person-to-person transmission. Studies indicate that 29%

person-to-person transmission, contrasting little to none in
NiVy outbreaks in Malaysia and Singapore [4,6,7,11,12].
Specifically, the consumption of date palm or date palm
sap contaminated by bat excreta has been identified as
a transmission source in the zoonotic cycle of Nipah virus
in Bangladesh and India (West Bengal outbreak) [9,13]. In
2014, an outbreak in the Philippines demonstrated addi-
tional transmission routes involving the slaughter and con-
sumption of infected horses, as well as person-to-person
transmission [14]. In addition to the two primary clades
(NiV-Malaysia and NiV-Bangladesh) causing human infec-
tions, phylogenetic analyses reveal a distinct Indian clade
(NiV-India), though not yet classified as a separate strain
from NiV Bangladesh [10,15,16].

The incubation period for Nipah virus infections in
humans ranged from 4 days to 2 months in Malaysia, with
92% of patients experiencing an incubation period of two
weeks or less, while it was shorter at 6 to 11days in
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Article highlights

¢ Nipah vaccine candidates can leverage existing regulatory pathways
such as the US FDA’s Accelerated Approval Program, Animal Rule,
and EMA’s conditional marketing authorization or marketing author-
ization under exceptional circumstances. This requires early engage-
ment between regulators, developers, and funders, as well as
collaboration among regulatory authorities for successful licensure.

e Recommend a common master platform where regulators such as
the US FDA, EMA, DGDA (Bangladesh), and CDSCO (India) can con-
vene and align licensure requirements and conditions. This will help
harmonize regulatory frameworks, streamline the licensure process
among regulatory authorities, and enhance transparency for vaccine
developers.

e Recommend alignment between vaccine developers and regulatory
authorities to establish surrogate immune markers, such as neutraliz-
ing antibody titers based on animal models, as primary endpoints for
vaccine efficacy. This will expedite the licensure process, especially
when Phase-3 trials focused on disease endpoints are not feasible.

e Governments and stakeholders of pandemic preparedness should
incentivize vaccine development through public-private partnerships,
grants, tax incentives, and funding for research on low-incidence but
high-consequence pathogens like Nipah virus.

¢ Developing global and national (especially for Bangladesh and India)
strategies for vaccine stockpiling and identifying use cases for future
Nipah vaccines will help expedite vaccine development and inform
efficient vaccine deployment strategies.

Bangladesh [1,4,17]. The duration from symptom onset to
death is rapid, with a mean of 8 days (range, 3-31 days) in
Bangladesh and India [7]. The case fatality rate is high at
78% in Bangladesh and 93% in India [4,7]. The spectrum of
clinical manifestations among severe cases includes broad
cellular tropism affecting endothelial, neuronal, and
respiratory epithelial cells [18-21]. Nipah virus has two
surface glycoproteins critical for viral entry, making them
key target platforms for vaccine development [22,23]. The
attachment (G) glycoprotein facilitates binding to host cell
receptors ephrin-B2 and ephrin-B3, while the fusion (F)
glycoprotein mediates membrane fusion, allowing the
virus to enter host cells [24-26].

2. Nipah vaccine candidates in human clinical trials

No Nipah vaccine has obtained licensure (as of
November 2024), and four Nipah vaccine candidates are in
Phase-1 clinical trials in healthy adults (Figure 1 and Table 1).

2.1. Viral vectored vaccines

The rVSVAG-EBOV GP/NiV G is a live-attenuated, recombinant
vesicular stomatitis virus (rVSV) vector vaccine [32,36]. This was
developed via collaboration between Crozet Biopharma LLC,
Public Health Vaccines Inc., the National Institute of Allergy
and Infectious Diseases (NIAID), and the Coalition for Epidemic
Preparedness Innovations (CEPI). rVSVAG-EBOV GP/NiV
G leverages the rVSV platform to express glycoproteins from
both the Zaire strain of Ebola virus (EBOV glycoprotein) and
NiVg (NiV attachment (G) glycoprotein) viruses. The EBOV GP
assists in fusion and cell entry, while the NiV G glycoprotein
enables attachment to cell receptors, potentially blocking the
attachment and infection of wild-type NiV. In a lethal chal-
lenge study with African green monkeys, rVSVAG-EBOV GP/NiV
G demonstrated robust protective efficacy by generating neu-
tralizing antibodies. Specifically, a neutralizing antibody titer
of > 1:5 correlated with 100% survival, while a titer of > 1:40
resulted in sterile immunity, effectively preventing both clin-
ical illness and viral replication [32]. Although the precise level
of protection has not been fully established, these immune
correlates of protection represent a promising step with its
progress through clinical trial phases. rVSVAG-EBOV GP/NiV
G is being tested in the US (NCT05178901, NCT06221813) for
a single dose schedule with various dose levels [27,31]. The
first Phase-1 clinical trial that evaluated safety and immuno-
genicity in 60 healthy adults was completed in 2023
(NCT05178901) [27]. The second Phase-1 clinical trial (Phase-
1b) is ongoing, with the primary outcome measures of adverse
events and immunogenicity [31].

The ChAdOx1 NipahB vaccine is a recombinant adeno-
viral vector vaccine [33,37]. This was developed by the
University of Oxford in collaboration with CEPI. Utilizing
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Figure 1. Nipah vaccine candidates in clinical trials. As of November 2024, there are Nipah vaccine candidates in Phase-1 clinical trials in humans. This figure uses

investigational names.
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the same chimpanzee adenovirus vector platform as the
Oxford/AstraZeneca SARS-CoV-2 vaccine, this candidate
incorporates the NiV glycoprotein gene to stimulate an
immune response [33,37]. The ongoing Phase-1 clinical
trial aims to evaluate the safety and immunogenicity of
the ChAdOx1 NipahB vaccine in healthy adults in the UK,
investigating  single-dose and two-dose  schedules
(ISRCTN87634044) [28]. The ChAdOx1 NipahB vaccine was
also tested in an African green monkey lethal challenge
model, demonstrating NiV-G glycoprotein-specific IgG and
neutralizing antibody responses after both single-dose and
two-dose administration [33]. The NipahB G glycoprotein-
specific serological response identified in the non-human
primate (NHP) study is expected to play a key immunologic
protective role and thus will be evaluated in the Phase-1
clinical trial as the secondary outcome measure.

2.2. mRNA vaccine

The mRNA-1215 vaccine is a lipid nanoparticle-formulated
messenger RNA vaccine that targets the NiVy, strain [41,42].
This was developed by Moderna in collaboration with the
Vaccine Research Center at NIAID. It encodes viral glycopro-
teins, specifically the fusion (F) and attachment (G) proteins
of NiV, to induce an immune response. A Phase-1 clinical
trial with a dose-escalation design, which measured the
safety, tolerability, and antibody responses in healthy adults

in the US (NCT05398796), was completed in
September 2024 [30]. Preclinical studies demonstrated
immunogenicity and neutralizing antibody responses

against NiVy, NiVg, and cross-reactivity with Hendra virus
(HeV) in mice models [41,42].

2.3. Protein subunit vaccine

The HeV-sG-V vaccine is designed to elicit protection
against both NiV (Bangladesh and Malaysia strains) and
Hendra virus (HeV) by utilizing the soluble G glycoprotein
of HeV (HeV-sG), formulated with aluminum hydroxide adju-
vant [34,35]. This was developed by Auro Vaccines LLC in
collaboration with the Program for Appropriate Technology
in Health (PATH) and CEPI. In preclinical studies, including
NHP models, a single-dose regimen provided complete pro-
tection against lethal challenges from both Nipah and
Hendra viruses by inducing neutralizing antibody responses
and eliminating detectable viral RNA in vaccinated animals
[34]. A Phase-1 clinical trial in 192 healthy adults in the US
used a dose-escalation approach, evaluating both single-
dose and two-dose regimens to evaluate the safety, toler-
ability, and immunogenicity of HeV-sG-V  vaccine
(NCT04199169) [29]. The findings from the Phase-1 clinical
trial (available in preprints) suggest that a single adminis-
tration of HeV-sG-V produced limited immunogenicity,
while two doses induced strong neutralizing antibody
responses [43]. The highest response rates were observed
in participants who received two doses of 100 micrograms
administered 28 days apart [43].

3. Feasibility of Phase-3 Nipah vaccine efficacy trials

Nipah outbreaks have been sporadic and limited in size, which
does not allow sufficient sample size for conducting traditional
Phase-3 efficacy trials with a randomized controlled design
focused on disease end-points. A modeling study assessing
the feasibility of conducting a Phase-3 vaccine trial in
Bangladesh under current conditions inferred that it would
take 516 years for a cluster-randomized ring vaccination trial,
43 years for a cluster-randomized mass vaccination trial, and
seven years for an observational case-control study to com-
plete at current levels of incidence [44]. Given these chal-
lenges, the need for alternative trial designs for efficacy
evaluation, such as controlled animal studies for vaccine licen-
sure, has been highlighted [11,32,44]. The low incidence of
Nipah infections also indicates weak incentives for stake-
holders such as vaccine developers, manufacturers, and gov-
ernments of affected countries to invest in the research and
development of medical countermeasures against Nipah,
especially in resource-limited settings with competing
priorities.

Given the high case fatality rate and the potential for Nipah
virus to become more transmissible in the future, the World
Health Organization (WHO) has listed Nipah as a priority
pathogen, and CEPl and NIAID have also supported the
research and development of Nipah vaccines from the epi-
demic and pandemic preparedness perspective [45,46]. For
Nipah vaccine candidates to make progress for licensure and
use, alternative approaches in testing the safety and efficacy
are required. Key considerations include: (1) Identification and
qualification of animal models that closely represent human
disease endpoints, including harmonization of challenge
doses and routes of administration; (2) Validation of immuno-
logical assays to establish reproducible surrogate endpoints;
and (3) Dose selection and extrapolation from animal models
to humans supported by pharmacokinetic and pharmacody-
namic data [11,47]. Additionally, international stakeholders
and WHO-listed (regulatory) authorities such as the US Food
and Drug Administration (FDA) and the European Medicines
Agency (EMA), as well as the national regulatory agencies of
Bangladesh (Directorate General of Drug Administration) and
India (Central Drugs Standard Control Organization) should
explore the approval of Nipah vaccine through alternative
regulatory approval pathways [48,49].

4. Regulatory challenges

Ebola virus was first identified in 1976 and emerged through
zoonotic transmission, likely from fruit bats, and caused spora-
dic outbreaks in Africa until 2013 [50]. However, it was not
until 2014-2016 that the Ebola virus triggered a major epi-
demic. During the 40years leading up to this outbreak, the
affected countries remained vulnerable, allowing the patho-
gen to evolve and eventually cause significant public health
impact. The experience of the 2014-2016 Ebola epidemic led
to improved global epidemic preparedness and response cap-
abilities and spurred the establishment of CEPI in 2016 [51].
This aimed to change the pattern of short-term emergency
response to a long-term view of epidemic preparedness and



innovations, including vaccine development against high-
consequence pathogens like Nipah virus.

However, the sporadic nature of Nipah outbreaks limits
the feasibility of traditional Phase-3 vaccine efficacy trials
and necessitates alternative regulatory pathways that are
suited for high-consequence pathogens with infrequent
outbreaks. As an alternative to the traditional large-scale
Phase-3 efficacy trial, CEPI considers the use of investiga-
tional stockpiles for priority pathogens to evaluate the vac-
cine efficacy in outbreak situations [52]. In the example of
the 2014-2016 Ebola epidemic in West Africa, the emer-
gency deployment of the Ebola virus vaccine (recombinant
vesicular stomatitis virus-Zaire Ebola virus) during outbreaks
allowed for efficacy assessments using the ring vaccination
trial model [53,54]. While the ring vaccination trial design in
Guinea showed high efficacy, providing a proof of concept
for deploying investigational vaccines effectively during an
outbreak, logistical and infrastructure issues hampered the
trial implementation in other settings, such as Liberia
[54,55].

Historically, vaccines against influenza, pneumococcal and
meningococcal disease, smallpox, rabies, yellow fever,
Japanese encephalitis, and COVID-19 have been approved
using immune surrogates, not the conventional disease end-
points [32,56-58]. These approvals often involve comparing
immune responses to those seen with preceding established
vaccines to demonstrate similar or superior efficacy through
non-inferiority clinical trials. However, this is not applicable
for Nipah, where no preexisting licensed vaccine or defined
immune correlates of protection with human clinical data
exist to compare in non-inferiority clinical trials.
Consequently, alternative regulatory pathways need to be
explored, such as demonstrating efficacy through immune
responses in animal models [35]. Immune protection is mea-
sured through experimental endpoints such as survival, dis-
ease progression, or viral load reduction and can be used as
surrogates for human efficacy. A relevant example is the
MVA-BN-Filo boost vaccine against Ebola virus disease, show-
ing a strong correlation between protection in a non-human
primate (NHP) model and human IgG-binding antibody levels
using a combined approach of NHP studies and human
clinical trials [59,60]. Nipah vaccines may be considered for
a similar evaluation process, in which case a protective
immunity level, such as neutralizing or binding antibody
titers, needs to be defined to determine the surrogate of
immune protection quantitatively. This alternative regulatory
pathway offers a way forward for Nipah vaccines, but it is
highly dependent on the regulatory willingness in the ende-
mic countries to accept these alternative measures of effi-
cacy. At the Nipah@20 meeting in 2019, the importance of
early engagement and dialogue among national regulatory
agencies was emphasized, leading to the formation of
a multinational Nipah-focused regulatory group [47].
However, progress on this initiative was significantly delayed
by the onset of the COVID-19 pandemic, which occurred
shortly after the meeting. The following sections describe
the alternative regulatory pathways that could potentially
be used for the approval of Nipah vaccines in the develop-
ment pipeline.
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4.1. Food and drug administration (FDA) - United States

The US FDA’s ‘Accelerated Approval’ pathway allows the use
of surrogate endpoints to approve therapeutics and vaccines
for fatal diseases in a shortened timeline compared to the
traditional pathways [61,62]. Accelerated approvals may be
subject to conducting post-licensure Phase-4 Nipah vaccine
effectiveness studies to estimate vaccine effectiveness [61].
Additionally, the human challenge model could be considered
to demonstrate vaccine efficacy in unique situations [61,63].
However, for highly lethal pathogens like Nipah, conducting
human challenge trials poses safety and ethical concerns that
make the approach highly unlikely [64].

Another possibility is the FDA’s ‘Animal Rule,” which offers
a pathway for vaccine licensure where human efficacy studies
are infeasible or unethical [65,66]. Under this rule, Phase I/Il
safety and immunogenicity trials are conducted in healthy
humans, while efficacy is demonstrated in well-established
animal models. These models must meet specific criteria —
understanding the pathogen’s mechanism of toxicity and pre-
vention, demonstrating effects in predictive animal species,
linking animal study endpoints to human benefits, and using
pharmacokinetic and pharmacodynamic data to select effec-
tive human doses [65]. As of November 2024, two vaccines
(Anthrax Vaccine Adsorbed Emergent BioSolutions and
Anthrax Vaccine Adsorbed, Adjuvanted) for anthrax pre- and
post-exposure prophylaxis have been approved through the
Animal Rule [65-68]. For Nipah, key animal models include
Syrian golden hamsters, ferrets, and African green monkeys,
which reflect various aspects of human disease progression
[11,20,69,70]. However, standardizing and validating immu-
noassays remains a significant hurdle, given the technical
challenges of biosafety level 4 (BSL-4) containment for live
virus experiments [11]. The development and acceptance of
surrogate assays using pseudoviruses are potential solutions,
requiring extensive validation and stakeholder support.

4.2. European medicines agency (EMA) - European
union

The EMA guideline on clinical evaluation of vaccines stipulates
non-traditional measures for estimating vaccine efficacy when
conducting vaccine efficacy trials is infeasible [71]. As with the
US FDA, consideration of a human challenge trial is specified
under the EMA guideline, but poses safety and ethical con-
cerns for Nipah vaccines [64]. Alternatively, the EMA guideline
specifies the use of animal models in the form of either
challenge studies or passive transfer studies using sera or
T-cells from vaccinated animals or humans. When vaccines
are authorized based on such data, approvals are granted
through ‘conditional marketing authorization” with conditions
to conduct post-approval vaccine efficacy or effectiveness
studies [71,72]. Conditional marketing authorizations are
usually valid for one year and renewed annually.
Additionally, the EMA’s ‘PRIME: priority medicines’ scheme
provides a platform for vaccine developers to receive
enhanced support from the EMA from the early phases of
vaccine development [73,74]. For Nipah vaccine candidates,
entry into PRIME is a potential pathway toward vaccine
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approval and aligns the manufacturer to generate the requi-
site data needed by the regulatory authority for vaccine
approval in the absence of vaccine efficacy data measured
through disease endpoints.

Marketing authorizations under ‘exceptional circumstances’
are distinct from conditional marketing authorizations in that
they are granted when comprehensive data on a vaccine’s
efficacy and safety cannot be reasonably obtained [72,75].
This regulatory pathway is also relevant for Nipah vaccines,
given the limited applicability of traditional efficacy trials for
Nipah vaccines. Under exceptional circumstances, authoriza-
tion is granted based on incomplete data due to the rarity of
the disease, limitations in scientific knowledge, or ethical con-
cerns regarding data collection. Unlike conditional marketing
authorizations, where full data is expected to be eventually
gathered, marketing authorizations under exceptional circum-
stances are not intended to lead to the completion of a full
dossier. These authorizations are initially valid for five years,
with the benefit-risk balance reassessed annually based on the
evolving data.

4.3. Directorate general of drug administration
(DGDA) - Bangladesh

DGDA is the national regulatory authority that evaluates vac-
cines’ safety, efficacy, and quality for licensure approval in
Bangladesh. Preclinical and clinical trials are specifically guided
to be conducted as per the WHO Technical Report Series (TRS
927, 987, 924, 1004) and the International Council for
Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH) E6 guidelines [76].
DGDA regulates ‘special consideration for vaccine develop-
ment’ based on limited data when traditional efficacy trials
are not feasible due to the rarity of the infection or lack of
established immunological correlates of protection using ani-
mal studies, similar antigens, and functional immune response
measurements [76].

4.4. Central drugs standard control organization
(CDSCO) - India

CDSCO is the national regulatory authority that evaluates and
approves vaccines in India under the Drugs & Cosmetics Act of
1940 and the Drugs & Cosmetics Rules of 1945. In 2022, the
‘Conditional Market Authorization’ category was created,
which allows fast-track, conditional approval for drugs or vac-
cines with incomplete clinical trial data [77]. CDSCO requires
specific dossiers for imported and locally manufactured vac-
cines. There is a need for an aligned registration procedure for
domestic and foreign manufacturers, which will enhance
access to vaccines, including future Nipah vaccines.

4.5. Chikungunya vaccine approval through an
alternative regulatory pathway

The example of the first chikungunya vaccine approved by the
US FDA (in November 2023), EMA (in May 2024), and Health
Canada (in June 2024) represents a novel approach to
approval using the surrogate threshold of protection

established by the NHP passive transfer studies [78-81]. This
serves as an option to consider for the potential alternative
regulatory pathway for licensure of Nipah vaccine. Although
chikungunya and Nipah viruses differ in their epidemiology,
viral structure, and pathogenesis, the approval pathway for
the chikungunya vaccine without a large-scale randomized
controlled trial could be similar for a Nipah virus vaccine.

In a Phase-1 clinical trial involving 120 healthy adults, three
dose levels of the chikungunya vaccine were tested, and the
final dose was identified. This led to the establishment of
a conservative surrogate threshold of a 50% micro-plaque
reduction neutralization test titer of =150 (UPRNT50 > 150),
based on animal [82] and sero-epidemiological data [79,83].
An NHP passive transfer study, using the human sera from the
Phase-1 clinical trial to 46 cynomolgus macaques, showed that
this UPRNT50 > 150 threshold conferred protection upon chal-
lenge [82]. Additionally, a seroprevalence study conducted in
the Philippines demonstrated that a threshold of PRNT80 > 10,
approximately equivalent to a pPRNT50 = 50, correlated with
protection against symptomatic chikungunya infection in
humans [83].

In the Phase-3 pivotal clinical study, which enrolled
362 healthy adults, the immunogenicity endpoint of
MPRNT50 > 150 was successfully met [79,84]. The chikungunya
vaccine was approved for adults by the US FDA through the
Accelerated Approval pathway and subsequently by the EMA
under the PRIME scheme with conditional marketing author-
ization. The approvals are subject to conditions for conducting
post-marketing Phase-4 real-world effectiveness studies and
long-term evaluation of safety and immunogenicity in ende-
mic countries within five years [78,79]. This case study high-
lights the importance of collaboration between vaccine
developers and regulatory authorities in exploring alternative
regulatory pathways for vaccine licensure.

The US FDA'’s Accelerated Approval pathway and Animal
Rule and EMA'’s conditional marketing authorization pathways
are adaptable to vaccines against high-consequence patho-
gens with sporadic outbreaks, such as Nipah virus. Similarly,
Bangladesh’s DGDA and India’'s CDSCO have provisions for
considering limited clinical data and surrogate endpoints for
vaccine approval [44,47]. Current Nipah vaccine candidates in
Phase-1 clinical trials could pursue US or EU approvals based
on robust animal model data and immunological markers and
then seek parallel recognition by DGDA and CDSCO.
Harmonization and alignment of regulatory expectations
through international platforms would streamline vaccine
approval processes, allowing the Nipah vaccine candidates to
meet country-specific requirements by providing validated
immunoassays, NHP challenge data, and post-approval com-
mitments for effectiveness studies, ultimately facilitating
timely licensure across multiple jurisdictions.

5. Nipah vaccine use case

A draft Target Product Profile (TPP) for Nipah vaccines by WHO
specifies the use of vaccines as a reactive immunization strat-
egy that is initiated to control ongoing outbreaks [85]. The TPP
suggests the vaccine elicit immunity rapidly, preferably within



two weeks after a single dose, with high efficacy (i.e. >90%).
While the TPP states reactive immunization of at-risk indivi-
duals during an outbreak and target population as all age
groups, use cases are unclear. Defining target populations
across different outbreak scenarios is critical to ensuring the
efficient and strategic use of limited vaccine supplies and
prioritizing those at the highest risk of infection.

Based on the observed spillover events and transmission
patterns for Nipah, potential high-risk groups include indivi-
duals in close contact with bats, those who consume contami-
nated fruits and fruit products, and healthcare workers [7,17].
Additionally, evidence from Bangladesh suggests that the risk
of Nipah infection through person-to-person transmission is
associated with older age, exposure to body fluids, and pro-
longed contact with case-patients [17]. While these findings
provide insights to help guide the identification of target
populations for Nipah vaccination, further research is needed
to develop Nipah vaccine use cases tailored to the evolving
understanding of Nipah transmission dynamics and outbreak
scenarios.

6. Nipah vaccine development and rollout strategies
supported by modeling

Modeling can inform decision-making in pre- and post-
licensure stages of Nipah vaccine development. In the pre-
licensure stage, model-based simulations can explore and
optimize clinical trial designs by factoring in varied epidemio-
logical settings like transmission rates and outbreak scales,
thereby enhancing the potential for trials to measure vaccine
efficacy under unpredictable outbreak patterns [86,87]. In the
post-licensure stage, modeling approaches can be applied to
simulate outbreak scenarios under varied vaccination strate-
gies, such as deploying investigational stockpiles, ring vaccina-
tion, or mass immunization campaigns, to predict their
epidemiological impact and evaluate cost-effectiveness.
Geospatial modeling can project the optimal vaccine stock-
piling needs for outbreaks of emerging viruses based on spil-
lover geography and human mobility networks [88]. These
approaches have proven effective in guiding Ebola vaccine
deployment and preparedness for cholera and influenza
[89,90].

Modeling also serves as a valuable tool for broader epi-
demic and pandemic preparedness through extensions to
project the potential impact of vaccination under the emer-
gence of a novel pathogen with characteristics similar to
Nipah (NiV-like Disease X), thereby providing strategic insights
for vaccine development and strengthening pandemic prepa-
redness and response against future outbreaks of NiV-like
Disease X. For example, a mathematical modeling study,
which investigated the potential health and economic impact
of Lassa virus vaccine, projected the impact of achieving 100
Days Mission vaccination targets for a hypothetical Lassa-X
pandemic scenario [91,92].

7. Conclusion

While the licensure of Nipah vaccines faces regulatory chal-
lenges due to the sporadic and low-incidence nature of
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outbreaks, we highlight recommendations to overcome
these challenges. Alternative regulatory pathways, including
the use of immune surrogate markers and animal models,
present viable pathways toward approval of Nipah vaccines
in the development pipeline. Harmonization of Nipah vaccine
licensure requirements among national regulatory authorities
(US FDA, EMA, DGDA (Bangladesh), and CDSCO (India)) will
lower the regulatory burden of vaccine developers and expe-
dite approval. In the context of epidemic preparedness, stra-
tegic stockpiling of Nipah vaccines and response through
targeted deployment strategies will enhance the public health
impact through prevention and control of Nipah outbreaks.

8. Expert opinion

Developing a Nipah vaccine poses unique challenges due to
the sporadic nature of outbreaks, the high mortality rate, and
the significant regulatory and logistical hurdles in developing
a vaccine for a low-incidence but high-consequence (high case
fatality rate) pathogen. Successfully overcoming these chal-
lenges could transform global epidemic preparedness and
response approach, not only for Nipah virus but also as
a model for other emerging infectious diseases of low inci-
dence and high case fatality rate.

Advances in regulatory frameworks from major regulatory
agencies, such as the US FDA’s Animal Rule and EMA’s condi-
tional marketing authorization, provide mechanisms for
approving vaccines based on limited efficacy data from surro-
gate markers rather than large-scale human efficacy trials
focused on disease endpoints. In the context of Nipah virus,
these pathways could expedite vaccine availability in the
event of an outbreak, allowing public health responses to be
more agile and effective. However, these advances also
require significant preemptive engagement and coordination
among national regulatory authorities in Bangladesh and
India, as well as vaccine developers to use validated surrogate
markers and conduct clinical trials during outbreaks to gener-
ate vaccine efficacy data. Establishing a common regulatory
platform would facilitate the global alignment needed for
such approvals. Without such frameworks in place, adoption
into clinical practice would be delayed as developers face
disparate requirements and lengthy review processes across
different jurisdictions, thereby hindering the rapid use of
vaccines.

Establishing an investigational stockpile for efficacy trials
during outbreaks would play a pivotal role in gathering essen-
tial data on vaccine effectiveness. Such a stockpile could also
act as a rapid-response tool through the WHO Emergency Use
Listing (EUL) measure, allowing for immediate deployment in
high-risk regions, even before definitive efficacy data is avail-
able. This approach has proven effective for diseases like Ebola
and polio, where investigational vaccines have been deployed
to mitigate outbreaks [93].

A critical area that requires advancement is the standardi-
zation of surrogate immune markers for efficacy. Currently, the
lack of universally accepted endpoints for Nipah and similar
pathogens hampers rapid vaccine licensure and limits the
ability to compare results across trials. Solutions include estab-
lishing well-coordinated international research collaborations,
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funding animal model studies, and supporting shared data-
bases to accelerate the generation and validation of surrogate
markers of protection. Furthermore, projecting the optimal
stockpile size and preparing for stockpile management strate-
gies should also be part of proactive epidemic preparedness.
Addressing these limitations would pave the way for faster
vaccine evaluation and deployment when outbreaks occur
and prevent vaccine shortages.

From a pandemic preparedness perspective, harmonizing
regulatory frameworks, optimizing stockpiling strategies, and
incentivization models for Nipah vaccine development would
serve as a blueprint for developing vaccines against other
reemerging and newly emerging pathogens. Further, vaccine
platforms that target viral families rather than individual
pathogens would enhance efficiency in preparing for novel
threats. In the next five to ten years, the global landscape of
Nipah vaccine development is likely to evolve significantly
with the support from WHO and CEPI as well as the CEPI 2.0
strategy with a shifted focus on the rapid vaccine develop-
ment and licensure, rather than deploying pre-licensed vac-
cine stockpiles during outbreaks to estimate efficacy.
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